Far-IR Water Vapor Continuum Coefficients from the RHUBC-II Campaign Eli Mlawer (AER) and David Turner (NOAA NSSL) #### Many other contributors: Jennifer Delamere, Luca Palchetti, Karen Cady-Pereira, Matt Alvarado, Vivienne Payne, Dan Gombos, Rick Pernak, Aronne Merrelli, Dan Vimont, Ed Westwater, Nico Cimini, Paul Green, Marty Mlynczak, Rich Cageao, Giovanni Bianchini, Scott Paine, Bob Knuteson, Hank Revercomb, Tony Clough, Dave Tobin, Susanne Crewell, Gerrit Maschwitz, Mark Ivey, Kim Nitschke, Jim Mather, Maria Cadeddu ## Overview of Clear-sky Infrared Radiative Processes Mlawer and Turner, ARM/ASR Pl Meeting, April, 2016 Spectral Cooling Rates (troposphere) "Clough Plot" #### Far-Infrared Radiative Processes # Cooling rates due to H₂O lines and H₂O continuum # Impact on cooling rates of turning off H₂O continuum # Radiative Heating in Underexplored Bands Campaign - I ## **RHUBC-I** #### Goal: Improve knowledge of H₂O spectroscopy from 400-600 cm⁻¹ - ARM North Slope of Alaska Site, Barrow, AK - February March 2007, 70 radiosondes launched - Minimum PWV: 0.95 mm (observed) - 2 far-IR / IR interferometers - spectral range of AERI extended to 400 cm⁻¹ (AERI_ER) - 3 sub-millimeter radiometers for PWV observations #### RHUBC-I: Results AERI_ER Measurements AERI – LBLRTM residuals before RHUBC-I Residuals after RHUBC-I Spectroscopic modifications from RHUBC-I (Delamere et al., 2009) - adjustments to water vapor foreign continuum - foreign-broadened line widths for 42 H₂O lines were adjusted #### RHUBC-I: Results # Modifications to H₂O foreign continuum from RHUBC-I - new model MT_CKD_2.4 - new measurements used to develop model from spectral regions indicated in green - Revised continuum leads to significant changes in net flux - RRTMG updated with MT_CKD_2.4, 20-yr simulation performed with CESM v1 (Turner et al., 2012) - statistically significant changes in temperature, humidity, and cloud fraction # Moving Past RHUBC-I # Radiative Heating in Underexplored Bands Campaign - II ## RHUBC-II - Cerro Toco, Chile (23°S, 68°E, altitude 5380 m) - August October 2009, 144 radiosondes were launched - Minimum PWV: ~0.2 mm (5x drier than RHUBC-I) - 3 far-IR / IR interferometers (REFIR, FIRST, AERI) - REFIR (FTS) 100-1400 cm⁻¹ - 183 GHz radiometer for determining H₂O (GVRP) #### Major issues in RHUBC-II analysis: Specifying accurate atmospheric profiles (temperature and H₂O) above the radiometers given that RHUBC-II radiosondes were blown east off cliff by consistent 30 m/s winds - also, sonde H₂O measurements have known inaccuracies (as much as 60%) in dry conditions. #### Determining 'best guess' temperature and H₂O profiles - Temperature (at each AERI measurement time) blend together: - surface met tower measurement - below 3.0 km combine AERI T retrievals from two strong CO₂ bands - above 3.0 km radiosonde observation (interpolated to time) - H₂O retrieve H₂O profile using GVRP (183 GHz) and sonde measurements #### **Example of GVRP Retrieval of H2O Profile** 0.0 mm < PWV < 0.3 mm 0.3 mm < PWV < 0.5 mn (122 cases) Observed radiances (REFIR) LBLRTM calculation (MT_CKD_2.4) Residuals (REFIR-LBLRTM) +- 1 stdev +20% foreign continuum Residuals (REFIR-LBLRTM) with modified foreign continuum +- 1 stdev # RHUBC-II: the H₂O foreign continuum between 200-400 cm⁻¹ is much larger than in recent versions of MT_CKD #### Effect of foreign continuum derived from RHUBC-II (wrt MT_CKD_2.4) ## Summary - RHUBC-II analysis leads to a large increase in H₂O foreign continuum in far-IR region - significant impact on fluxes, cooling rates, and (likely) simulations - Latest in a long history of successful ARM/ASR radiative closure studies #### Next steps - Test new continuum on RHUBC-I data - Adjust H₂O far-IR line widths as needed - Create new version of MT_CKD, implement in LBLRTM and RRTMG - Paper #### Possible future steps AERI data from RHUBC-II may provide unique information on spectroscopy of H₂O fundamental band (1300-1900 cm⁻¹) and v₄ band CH₄ (1250-1350 cm⁻¹)