How well can we generate, characterized, and predict black carbon soot particle optical properties?

LINDSAY RENBAUM-WOLFF, James Brogan, Yatish Parmar, Andrew Lee, Paul Davidovits - BC
Timothy Onasch, Greg Magoon, Andrew Freedman, Rick Miake-Lye, Andrew Lambe, Leah Williams - ARI
Taylor Helgestad, Christopher Cappa – UC Davis
Al Fischer, Geoff Smith – University of Georgia
Noopur Sharma, Janarjan Bhandari, Swarup China, Claudio Mazzoleni – Mich Tech Univ
Arthur J. Sedlacek, Ernie Lewis – Brookhaven National Laboratory
Eleanor Browne, Gabriel Isaacman-VanWertz, Jesse Kroll - MIT

AERODYNE RESEARCH, Inc.
Atmospheric Black Carbon

- Product of incomplete combustion
- Emissions as high as 8 TgC/yr
 - ~60% fossil fuel and biofuel consumption
 - ~40% open biomass burning
- Non-spherical shape that depends on chemical processing
- Absorbs light strongly; depends upon coating material
- IPCC Fifth Assessment Report direct RF for fossil fuel
 \[\text{BC} = +0.40 \, \text{W m}^{-2} \pm 0.05 \text{ to } 0.80 \, \text{W m}^{-2} \]
Particle mixing state

• In urban and rural environments, BC is found internally mixed to varying extents with organics (POA and SOA) and inorganics (SO$_4$ and NO$_3$).

Alex Lee et al., 2015 - U. Toronto

Radiative impact of internal mixing

Cappa et al., 2012

Liu et al., 2015

California urban summer
- Mainly urban (traffic, etc.) sources with little/no biofuels
- Measurements lower than shell-core Mie theory

UK suburban winter
- Mixed sources including solid fuel burning
- Measurements match shell-core Mie theory
BC4 experimental details

Diffusion flame

SOA coatings

Mobility size & mass selected

Optical properties measured across UV-Vis range!
Flame generated nascent soot
Methane diffusion flame – ‘mature’ soot

- Mobility selected 300 nm (DMA)
- Mass selected 3.3 fg/particle (CPMA)

- Fractal particles composed of ~30 nm spherules
- Variety of geometries, including more linear and compact

Janarjan Bhandari, Swarup China, Claudio Mazzoleni – Michigan Technical University
Mass Corrections Using SP2
Effects of Q^+ and Q^{++}

- **250 nm, 2.4 fg**
 - Two Mass Peaks
 - $Q1 = 2.1$ fg
 - $Q2 = 5.4$ fg
 - $<m> = 2.80$ fg

- **500 nm, 8.3 fg**
 - Single Valued
 - $Q1 = $ Measured Mass

Acknowledge DOE ARM SP2

Arthur Sedlacek– Brookhaven National Laboratory
MAC
Mass Absorption Coefficient (Absorption Cross Section Per Unit Mass)
Used With Soot Emission Inventories in GCMs to Calculate Radiative Forcing

\(\lambda = 630 \text{ nm} \)

- \(\text{MAC} = 6.40 \pm 0.22 \text{ m}^2 \text{ g}^{-1} \) (2\(\sigma\) precision)
- Total Uncertainty = ±10%
 (Accuracy + Precision)
- Literature
 6.5±1.0 m² g⁻¹ (Bond and Bergstrom, 2006)
 6.5±1.0 m² g⁻¹ (Petzold and Schönlinner, 2004)
Predictive optical theories

Mie theory
- assuming mass-equivalent sphere
- material density = 1.8 g cm\(^{-3}\)
- RI (1.95, -0.79) (Bond and Bergstrom, 2006)

T-Matrix theory
- assuming constant size primary spherules, no overlap of spherules, and no necking
- exact results for a given geometry
- simulated representative aggregate geometries created with cluster-cluster (CC) and diffusion limited aggregation (DLA) methods

Mie theory does not match measurements well for both absorption and scattering!
Derived complex RI’s

High Dimension Model Representation

- HDMR meta-model of T-matrix results
- One-, two-, and three-sigma confidence regions for refractive index based on the HDMR meta-model and MAC and SSA measurements

<table>
<thead>
<tr>
<th>HDMR input parameter</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>fractal prefactor, k_0</td>
<td>0.68 - 1.50</td>
</tr>
<tr>
<td>fractal dimension, D_f</td>
<td>1.60 - 2.01</td>
</tr>
<tr>
<td>real refractive index, n</td>
<td>1.56 – 2.34</td>
</tr>
<tr>
<td>imaginary refractive index, k</td>
<td>0.632 – 1.264</td>
</tr>
<tr>
<td>primary spherule radius, a</td>
<td>10 - 20 nm</td>
</tr>
<tr>
<td>density, ρ</td>
<td>1.6 - 1.9 g/cm³</td>
</tr>
<tr>
<td>mass, m</td>
<td>0.11 - 16 fg</td>
</tr>
</tbody>
</table>

Bond and Bergstrom, 2006
Ångström Coefficient Determination

- AAE = 1.25 ± 0.24
- Uncertainties reflect accuracies of absorption measurements
- Uncertainties in Number Density and Mass cause points to shift up and down in concert
- Fits are Weighted by Error Bars
 Essentially Pinned to CAPS Value at 630 nm
Impacts of coatings on optical properties

- ABS increases by ~1.8 and plateaus
- EXT (really SCAT) increases more rapidly than ABS and does not plateau

\(\lambda = 630 \text{ nm} \)
Predictive core-shell Mie Theory

Core-shell Mie theory
- over predicts EXT at small mass ratios (< 0.7)
- over predicts ABS at small to medium mass ratios (< 5)
- Adequately predicts EXT and ABS high mass ratios (> 5)
Small mass ratios induce morphological changes which affect SCAT and ABS differently.
Conclusions

• Mie theory cannot predict both the scattering and absorption of nascent or uncoated soot particles
• Core-shell Mie theory over predicts the scattering and absorption for thinly coated soot particles, but appears to works well for thicker coatings
• Small amounts of SOA and H$_2$SO$_4$ mass condensation on fractal-like soot particles
 – Collapse the core soot structures for thin coatings, affecting the scattering more than absorption
 – Fill in interstitial regions initially, minimizing increases in cross-sections, leading to lower initial absorption enhancements
• More appropriate models, such as T-matrix or DDA, may be required for ‘freshly’ emitted and thinly coated soot particles in atmospheric models
 – HDMR may help incorporate these complex calculations into process, regional, and global models
Acknowledgements

DOE ASR funding – DOE ARM SP2

BC4 study

<table>
<thead>
<tr>
<th>Participating Institution</th>
<th>Instrumentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boston College</td>
<td>PAM, SMPS, O3 monitor, CPCs, AMS</td>
</tr>
<tr>
<td>Aerodyne Research</td>
<td>MCPC, SP-AMS, CPMA</td>
</tr>
<tr>
<td>Massachusetts Institute Of Technology</td>
<td>CAPS-SSA (630), CPMA</td>
</tr>
<tr>
<td>University of California Davis</td>
<td>CRD, PAS (405, 532nm)</td>
</tr>
<tr>
<td>University of GA</td>
<td>Broadband PAS (8 λ’s)</td>
</tr>
<tr>
<td>Michigan Technological University</td>
<td>SEM/TEM analysis</td>
</tr>
<tr>
<td>Brookhaven National Labs</td>
<td>SP2 soot photometer</td>
</tr>
</tbody>
</table>