Polarimetric radar analysis using Oliktok Ka/W-band SACR2: Mixed-ice particles in Arctic mixed-phase clouds

Mariko Oue and Pavlos Kollias Stony Brook University

Zhiyuan Jiang, Kultegin Aydin, Eugene Clothiaux, and Johannes Verlinde Pennsylvania State University

Polarimetric radar measurements

Ka/W-SACR2 polarimetric measurements provide information about ice particles (e.g., ice crystal habit, size, number concentration).

Vertically polarized microwave (V)

Z_{HH}: Radar reflectivity (dBZ)

 \rightarrow Mass, size, number concentration

<u>*K*_{DP}</u>: Differential propagation phase shit (° km⁻¹) Oblate Sphere Prolate

Sensitive to oriented particles

Case overview: Mixed-phase cloud on 29 Nov. 2015

 Temperatures were approximately -15°C in the most of cloud, corresponding to dendritic crystal growth regime.

Ka/W-SACR2 polarimetric data in RHI

 $\text{High } Z_{\text{HH}}$

Low Z_{DR}

High K_{DP}

- K_{DP} is a good indicator of oblate ice particles, especially at W band.
- K_{DP} values were consistent with scattering calculations for dendrites, while Z_{DR} values were lower than scattering calculations.
- Low Z_{DR} values indicate that spherical particles dominated the total reflectivity.
- Inconsistency between K_{DP} and Z_{DR} suggests mixed different types of ice particles.

Ka/W-SACR2 polarimetric data in PPI and KAZR

Azimuthal averages of polarimetric variables at each level from PPI (*Ryzhkov et al. 2016*)

Region I:

High Z_{HH} with high K_{DP} but weakly positive Z_{DR} ,

 \rightarrow mixture of large, spherical particles (high Z_{HH}, low Z_{DR}), and plate-like crystals (high K_{DP}).

Faster-falling population (**d**) has higher or equal contribution than slower population (**a**)

 \rightarrow Population **a** corresponds to plate-like crystals; population **d** corresponds to spherical particles.

Region II:

Decreasing Z_{DR} downward with higher K_{DP} ,

 \rightarrow Increase of number concentration and aggregation.

Slower-falling population (**a**) dominates the total reflectivity.

 \rightarrow Population **a** corresponds to plate-like crystals, growing into aggregates toward the ground.

Summary

- Ka/W-SACR2 polarimetric analysis can provide information to identify precipitating ice particles in Arctic mixed-phase clouds.
 - K_{DP} is a good indicator of oblate ice particles, especially at W band.
 - K_{DP} values were consistent with scattering calculations for dendrites, while Z_{DR} values were lower than scattering calculations.
 - Low Z_{DR} values indicate that spherical particles dominated the total reflectivity.
 - In conjunction with KAZR Doppler spectra, quantitative analysis of mixed ice particles will be available.

Quasi-vertical profiles from PPI

- Vertical profiles from azimuthal average of PPI measurements can be compared with vertically-pointing radar (KAZR). --- Quasi-vertical profile method (Ryzhkov et al. 2016).
- QVP was applied to the northern sector of PPI observations.