### ARM Cloud Radar Simulator for GCMs: Latest Update and Applications

#### Shaocheng Xie and Yuying Zhang Lawrence Livermore National Laboratory

#### **Acknowledgments**

ARM, the ARM/ASR Radar Group, the COSP Project Management Committee, Steve Klein, Roger Marchand, Pavlos Kollias, Eugene Clothiaux, Scott Collis, Tristan L'Ecuyer, Wuyin Lin, Karen Johnson, etc.



LLNL-PRES-647364

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC



## Simulator to Bridge the Gap between GCM Clouds and Cloud Observations

- Significant differences between how a climate model represents clouds and what ARM instruments see
  - scale of model grids (~100 km) vs. point measurements
  - model variables vs. instrument observables
  - different definition for clouds
  - Observation limitations (detected signal and attenuation of signals)



# Ideas on the ARM Radar Simulator

- Take the advantage of COSP, the CFMIP Observation Simulator Package, by inverting the COSP CloudSat simulator for view from the ground and run at a different wavelength for the ARM ground-based remote sensors
- Make it as part of **COSP** for a broad use by the climate modeling community





#### A Flowchart – ARM Radar Simulator



### Issues Need to be Addressed for an ARM Simulator

- Explore simulator uncertainties
  - Resolution
  - # of subcolumn
  - Minimum detectable signal threshold
  - Saturation value of radar reflectivity
  - Subgrid precipitation distribution
  - Simulator uncertainties associated with particle size distribution
- Address clutter issue with ARM cloud observations
  - How to address the clutter issue in ARM CFAD
- Explore strategies for model and ARM cloud comparison
  - What is a suitable time and space scale for the comparison?
    - Diurnal cycle of clouds
    - seasonal mean and variability

## Sensitivity to the Number of Sub-column and Vertical Resolution



Currently we use 20 sub-columns and 100m resolution.

## Impact of Minimum Detectable Signal Threshold and Maximum Instrument Recording Signal

#### Summer Diurnal Precipitation at SGP (2009)



We also tested the saturation value of radar reflectivity as a function of height:  $dBZ_max$  (h, in km) = 20+20\*log10(h, km). The impact is insignificant

## Thank Pavlos Kollias and Eugene Clothiaux for providing the MDS and the maximum radar reflectivity profiles and valuable comments/suggestions

## **Clutter Issue**

#### CFAD generated with & without clutter

qc-flag = 1 or 2

qc-flag = 1



Karen Johnson is appreciated for her valuable comments and suggestions

# **Application to ACME**

High Frequency ARM OBS Allows Model Evaluation on Different Time Scales



#### Progress

- Completed V0 ARM cloud radar simulator development
  - Incorporate the ARM cloud radar simulator onto both COSP1.4 and COSP2.0 and ready to release
  - O V1 will add the non-attenuated, Rayleigh-scattering only, radar reflectivity CFAD to the simulator output
- Developed Multi-year CFAD from ARSCL/KAZR-ARSCL for model evaluation
  - ✓ Data are at hourly, 100m vertical resolution, 5 dBZ bin in the range of -50 dBZ to 25 dBZ.
  - ✓ Consider impact of clutter/insects on radar signal
  - ✓ 5-yr CFAD for 2006-2010 and some months in 2011 are done
  - Will extend the data to the most recent years once the KAZR-ARSCL data are available

#### Applied to ACME

- ✓ Applied the ARM cloud radar simulator offline on sample output from ACME around the ARM SGP site during its convection tests
- O will work with other modeling centers including both NWP and climate centers (ECMWF, NCEP, GFDL, MetOffice, Metro-France, ...) to promote its application

# **Future plan**

- Working with ARM and the COSP PMC to release the ARM simulator to the committee
- Extend the long-term ARM GCM-oriented cloud radar data (CFAD) at ARM permanent sites and AMF sites once the KAZR-ARSCL data are available
- Refine and improve the ARM radar simulator Add the non-attenuated, Rayleigh-scattering only, radar reflectivity CFAD to the simulator output and refine the code structure to make it more flexible for future modification
- Work with modeling centers for its applications ACME, CESM, ECMWF, NCEP, GFDL, MetOffice, Metro-France, ...
- Explore strategies for model-observation comparison and provide recommendation to the community
- Documentation, user guide, and distribution

Journal papers, Technical report, distributing the ARM simulator package

#### subsample\_and\_optics

Generates subcolumns Optical computations

#### cosp\_interface

v1.4.0 v1.5.0

#### cosp\_simulator

Calls subcolumn simulators Calls column simulators Computes joint simulator products

#### cosp\_isccp\_subcolumn

cosp\_misr\_subcolumn

cosp\_modis\_subcolumn

cosp\_cloudsat\_subcolumn

cosp\_calipso\_subcolumn

cosp\_parasol\_subcolumn

cosp\_rttov\_subcolumn

cosp\_misr\_column cosp\_isccp\_column

cosp\_modis\_column

cosp\_cloudsat\_column

cosp\_calipso\_column

cosp\_parasol\_column