Using MAGIC data to constrain the marine boundary layer CCN budget in the Sc-Cu transition region

Hans Mohrmann and Robert Wood University of Washington

MAGIC: Seasonality of accumulation mode aerosol concentration

• Coastal region variability explored in Painemal et al. (2015)

Back-trajectory source locations

Simple CCN budget in the MBL

$$\dot{N} = \left[\dot{N}\right]_{ent} + \left[\dot{N}\right]_{sfc} + \left[\dot{N}\right]_{coal}$$

Model accounts for:

- Entrainment
- Surface production (sea-salt)
- Coalescence scavenging

Model does not account for:

- New particle formation significance still too uncertain to include
- Advection
- Dry deposition (typically <10% of coalescence scavenging)
- Interstitial aerosol scavenging in-cloud, or subcloud precip scavenging

Production terms in CCN budget

to represent an upper limit

MAGIC Data used

- Focus on Sc-Cu transition region (130-145°W)
- Split data into summer and winter

Figure 2.1: (Thick black and blue lines) MAGIC ship path from Leg 15; the *Spirit* followed a fixed path for all legs with minor deviation. Thick dashes show boundaries of west/central/east regions of analysis. (Thin colored lines) CSET flights; colored section corresponds to boundary-layer and lower free-tropospheric profiling. Note that the bulk of the CSET flights took place within the central region.

Free tropospheric aerosol (N_{FT})

Data from NSF Cloud System Evolution in the Trades (CSET) aircraft campaign (G-V HIAPER, Jul-Aug 2015)

- Correlate lower freetropospheric concentration from UHSAS on G-V with MERRA-2 submicron aerosol mass
- Use MERRA-2 seasonallyvarying aerosol mass to estimate seasonal cycle in FT accumulation mode aerosol concentration
- Not great, but it is probably the best we can do

Cloud top entrainment rate

 Use Wood and Bretherton (2004) mass budget approach. For seasonal means, there is no storage term (∂z_i/∂t=0), so:

$$w_e = w_s + \mathbf{U} \cdot \nabla z_i$$

entrainment
rate subsidence
rate (ERA-I) Advection of
MBL depth (ERA-I)

Winter: $w_e = 3.4 \text{ mm s}^{-1}$ Summer: $w_e = 5.5 \text{ mm s}^{-1}$

Loss term in CCN budget: Coalescence scavenging

Steady state (equilibrium) CCN concentration

$$N_{eq} = \frac{\left(N_{FT} + \frac{\beta U_{10}^{3.41}}{Dz_i}\right)}{\left(1 + \frac{hkP_{CB}}{Dz_i}\right)}$$

$$w_{\rm e}/z_{\rm i} = D = {\rm surface divergence}$$

Precipitation estimates

- Z-R based estimates from WACR
- Z-R relationship for cloud base from Comstock et al. (2004) for light rain rates, with Marshall-Palmer Z-R for heavier rates, to generate a "hybrid" cloud base precipitation rate
- Winter mean precipitation <u>rate</u> exceeds summer by ~70%

How well do we estimate the accumulation mode aerosol concentration?

Winter

[surface] [entrain.] [precip sink]

200 40 Good agreement ۲ wind speed: 6.8, std.dev = 0.52 m/s entrainment: 3.4, std.dev = 0.74 mm/s between Aerosol concentration [cm⁻³] precip rate: 1.1, std.dev = 0.08 mm/day 00 00 00 Merosol tendency [cm⁻³ day⁻¹ observed and Error bars are 95% confidence 150 modeled aerosol limits estimated using bootstrap concentration Free troposphere ۲ 100 serves as a source and exceeds surface 50 source (N Aerosol concentrations Aerosol sources and sinks

[model] [free trop]

[obs.]

How well do we estimate the accumulation mode aerosol concentration?

- Concentrations roughly factor of two higher during summer; model captures quite well
- Precipitation explains 50% of seasonal difference
- Free troposphere is a weaker source than during winter owing to weaker FT-MBL differential
- Surface source more important

Summer

Summary

- In the Sc-Cu transiton region away from the coast, the mean summer accumulation mode aerosol concentration (N_a) in the MBL is roughly twice that during winter (100 cm⁻³ vs 50 cm⁻³)
- The summer-winter difference in N_a is captured reasonably well by simple CCN budget model driven by observationally-constrained surface sources, FT entrainment and precipitation sinks
- Seasonal cycle driven mostly (50%) by higher precipitation sink during winter
- There is plenty of uncertainty in these estimates

Additional slides

Subseasonal variability

UHSAS Size Distribution

 Seasonal concentration differences largely explained by changes in all size categories

Loss terms in CCN budget: (2) Dry deposition

$$\begin{bmatrix} \dot{N} \end{bmatrix}_{dry \, dep.} = -N \frac{W_{dep}}{Z_i} \sum_{\text{Deposition velocity}}$$

 w_{dep} = 0.002 to 0.03 cm s⁻¹ (Georgi 1988) K = 2.25 m² kg⁻¹ (Wood 2006)

For $P_{CB} = > 0.1 \text{ mm day}^{-1} \text{ and } h = 300 \text{ m}$

$$\frac{\left[\dot{N}\right]_{coal}}{\left[\dot{N}\right]_{dry\,dep.}} = 3 \text{ to } 30$$

For precip rates > 0.1 mm day⁻¹, coalescence scavenging dominates

CCN budget with all processes

