Evaluation of drizzle representation in LES models with bin microphysics

Jasmine Rémillard1,2, Pavlos Kollias1, Ann Fridlind2, Andy Ackerman2, George Tselioudis2, David Mechem3, Hannah Chandler3, Ed Luke4, Patrick Chuang5, Mikael Witte5, Dee Rossiter5, Rob Wood6 and Wanda Szyrmer7

1Stony Brook University 2NASA GISS 3University of Kansas 4BNL 5UC Santa Cruz 6University of Washington 7McGill University
Case study: 2009-11-22

MODIS image from AQUA overpasses

Storm influence from reanalysis
Case study: 2009-11-22
Case study: 2009-11-22
Motivation

1. Found no “easy” constraint of LES drizzle formation owing to large spread in observed variables over very wide range of \((all?)\) spatiotemporal scales

 - Drizzle strongly dependent on LWP (among other parameters)
 - No clear approach to reproduce observed frequencies (of LWP or other parameters) in LES
 - No clear approach (yet in hand) to robustly evaluate single LES case study with observations variably sampled over wide and multivariate parameter space

Time series from ground instruments (MWR, MFRSR, TSI)
Black symbols from VISST (courtesy of Kirk Ayers / NASA Langley)
Motivation

2. Found motivation to work harder owing to large differences in the number of drops produced by two LES for a given CCN [*due to differences in vertical velocity variance for same cloud-top entrainment!*]
 - Drizzle strongly dependent on the number of drops
 - Updated SAM dynamics agree closely with DHARMA, but observational verification required
 - No clear approach yet in hand to well constrain the LES vertical velocity variance
Motivation
Differences in the dynamics
Two LES models with bin microphysics

- idealized initial sounding (11Z), fixed subsidence profile and SST, periodic boundaries, fixed/similarity surface fluxes, nudged horizontal winds, diagnostic ammonium bisulfate aerosol PSD [Clarke et al. 1974]

<table>
<thead>
<tr>
<th>DHARMA</th>
<th>SAMEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>finite-difference dynamics scheme [Stevens et al. 2002]</td>
<td>finite-difference dynamics scheme [Khairoutdinov and Kogan 2003]</td>
</tr>
<tr>
<td>dynamic Smagorinsky sub-grid scale scheme [Kirkpatrick et al. 2006]</td>
<td>prognostic TKE sub-grid scale scheme [Deardorff 1980]</td>
</tr>
<tr>
<td>one-moment bin scheme</td>
<td>one-moment bin scheme</td>
</tr>
<tr>
<td>3rd-order advection scheme</td>
<td>2nd-order advection scheme</td>
</tr>
<tr>
<td>Beard and Ochs [1984, 1995] or coalescence efficiency = 1</td>
<td>coalescence efficiency = 1</td>
</tr>
</tbody>
</table>
Approach

• Observed drizzle moments and spectral properties exhibit robust relationships: do LES reproduce these?

→ Use the McGill radar Doppler spectra simulator to emulate radar spectra and moments from results of both LES models
Z–MDV relationship

Within cloud

Wiggles
Z, MDV, W near CT
Z–MDV relationship

Wiggles in Z-MDV space appear to be caused by limitations in LES representation of cloud-top dynamics: strong LES downdrafts near cloud top are not observed, presumably owing to limitations of LES dynamics here.
Z–Skewness relationship

Most pronounced: excessively negative spectral skewness in LES everywhere (DHARMA) or below cloud base (SAMEX)
Further look

- Forward simulations from a 1D model and in situ observations are consistent with a sharp decrease in N(D) at largest D more closer to SAMEX
- Motivation for follow-on study with DHARMA and McGill in 1D framework (DSDs realistic enough)
Ultimate goals

- Improve ability of LES with bin microphysics to faithfully represent radar observables without sacrifice to performance (analogous to three-moment CRM schemes)
- Use radar observables to do the “hard” constraint of LES drizzle formation
Approach

- Observed drizzle moments and spectral properties exhibit robust relationships: do LES reproduce these?
DHARMA – 130cc

[Graphs showing data with axes for Height [km], Restored time [hr], Reflectivity [dBZ], MDV [m s⁻¹], Width [m s⁻¹], with legend indicating color scales for each variable.}

NB: Velocity +ve upward
DHARMA – 130cc – 60 bins

NB: Velocity +ve upward
DHARMA – 65cc – 60 bins

NB: Velocity +ve upward
SAMEX – 130cc

Reflectivity [dBZ]

MDV [m s⁻¹]

Width [m s⁻¹]

Height [km] Restored time [hr]

NB: Velocity +ve upward