## **RELAMPAGO** Remote sensing of Electrification, Lightning, And Mesoscale/microscale Processes with Adaptive Ground Observations

Steve Nesbitt Associate Professor Department of Atmospheric Sciences University of Illinois at Urbana-Champaign





## **Motivation**

- Lack of consistent, high-frequency, repeatable observations of thermodynamic, kinematic, diabatic processes, and land surface conditions where convection initiates and grows upscale. NEXRAD and operational soundings not enough in US. So we do field projects!
- In the US, where we have a great chance of doing this, <u>the precipitation climatology widespread across</u> <u>the plains (e.g. PECAN)</u>, and the <u>terrain is</u> <u>complicated.</u>
- What if there existed a place where there are analogs to the US, where the precipitation climatology is reliable, and we could design a field campaign?













-80-40-20 20 40 80

Solman et al (2013)

There is a large uncertainty in climate and regional models in simulating precipitation.

Carril et al (2012)



## **RELAMPAGO/CACTI 2018-2019 is an international project...**

- to study intense continental convective systems in subtropical South America
- to understand their interactions with local and regional meteorology, aerosols, topography, and land-atmosphere interactions
- to improve severe storm hazard prediction
- to place extreme continental convection in context with regional and global climate





### **Science Steering Groups**

### CACTI

Adam Varble, U. Utah, lead scientist

#### **Co-Investigators:**

Eldo Avila, U. Cordoba Paul DeMott, CSU David Gochis, NCAR-RAL Robert Houze, UW/PNNL Michael Jensen, BNL Pavlos Kollias, Stony Brook/BNL Sonia Kreidenweis, CSU L. Ruby Leung, PNNL Greg McFarguhar, Illinois Steve Nesbitt, Illinois Kristen Rasmussen, NCAR MMM David Romps, Berkeley/LBNL Paola Salio, U. Buenos Aires Christopher Williams, U. Colorado Edward Zipser, U. Utah Sue van den Heever, CSU

### RELAMPAGO

Steve Nesbitt, Illinois (US NSF PI) Jeff Trapp, Illinois (US NSF Co-PI) Rita Roberts, NCAR-RAL (US NSF Co-PI)

Adam Varble, University of Utah (CACTI liason) Paola Salio, U. Buenos Aires, Argentina (Argentina lead) Luiz Machado, INPE, Brazil (Brazil lead) Francina Dominguez, Illinois Kristen Rasmussen, NCAR-MMM Jim Wilson, NCAR-RAL Karen Kosiba, CSWR Josh Wurman, CSWR Ed Zipser, Utah Robert Houze, U. Washington V. Chandrasekar, CSU Rachel Albrecht, U. São Paulo, Brazil Timothy Lang, NASA MSFC (US NASA/NOAA lead) Celeste Saulo (Servicio Meteorológico Nacional, Argentina)

### What is **RELAMPAGO?**

### Remote sensing of Electrification, Lightning, And Mesoscale/microscale Processes with Adaptive Ground Observations

### **RELAMPAGO's proposed primary science questions:**

1. Determine relevant environmental processes that lead to the <u>initiation of</u> <u>convection</u> near complex terrain features, and contrast the mechanisms near the Andean front and the lower mesoscale topography to the east.

2. Intensification and upscale growth of convection: Identify the kinematic, thermodynamic, and microphysical processes by which convection intensifies and grows upscale in the immediate vicinity of complex terrain features into extremely tall and broad convective systems.

3. Observe the processes by which <u>high-impact weather events</u> (flooding, hail, strong winds, and tornadoes) are generated in environments close to the Andes and lower mountains to the east of the Andes **in two nearby regions: the** 

Sierras de Cordoba, and Mendoza.

<u>1 Nov – 15 Dec 2018.</u>

## **RELAMPAGO + CACTI Potential Contributions**



| NSF (US)                                                                            | NASA (US)                                                                           | SMN (AR)                                                          | INPE (BR)                                                                                            | CONyCET<br>(CH)              |   | DOE (US)<br>CACTI                                                                   |
|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------|---|-------------------------------------------------------------------------------------|
| Deployment<br>pool<br>S-PolKa<br>DOWs<br>Soundings +<br>Expendables<br>Mesonet/Pods | Disdrometers<br>Rain gauges<br>Micro-rain<br>radars<br>NPOL?<br>ER-2?<br>(Proposed) | C-Band DP op<br>network<br>Mobile<br>soundings<br>Enhancement     | Mobile X-Band<br>DP radar<br>Precip/profiling<br>supersite<br>Lightning<br>mapping array<br>Sticknet | Sounding sites<br>(Proposed) | 5 | AMF-1<br>(cloud/profiling<br>suite, aerosol<br>measurements)<br>C-Band DP<br>Radar? |
| (CSWR)<br>DIAL LIDAR<br>Non-<br>deployment                                          | <b>NOAA (US)</b><br>GOES-R<br>validation                                            | of operational<br>radiosondes<br>DSD + rainfall<br><b>FUNDED!</b> | S-Band DP<br>radars<br>downstream<br>(Proposed)                                                      |                              |   | G-I<br>microphysical<br>and aerosol<br>aircraft)?                                   |
| pool<br>Hydromet<br>measurements<br>(RAL)<br>(Proposed)                             | Lightning<br>mapping array<br>Field mills<br>(Proposed)                             |                                                                   |                                                                                                      |                              |   |                                                                                     |



**RELAMPAGO-CACTI** broad study domain

# Radars to complement CACTI observations



AR Existing + SIRANAME Network: Critical for surveillance. <u>Need to</u> <u>demonstrate consistent calibration</u>.

**S-PolKa**: 4-D distribution of precipitation, microphysics, cloud liquid water, moisture

**3 DOW radars**: Dual-pol, dual-Doppler kinematics, low level structures

**Brazil X-Pol mobile radar**: Lagrangian tracking of systems

These radars will compliment each other, allowing the objectives of each radar to be fully accomplished without sacrificing measurement capabilities.



### 4 cases from 2015-16 warm season Córdoba INVAP Dual-pol C-Band radar Installed April 2015









## Why do we need NSF radars to accomplish these science objectives?

- Dual-Doppler scanning requires good low-level coverage and coordinated sector scans, which take away from microphysical scans (RHIs, volume scanning), mobile X-Bands (DOWs) can do this in a network configuration to mitigate attenuation
- C-band Argentinian radars,, and CSAPR-2 will suffer from attenuation and backscatter differential phase effects, plus we will lack operational control
- S-PolKa can help with calibration and algorithm development for C-Band radars, critical in hail, large drops, and heavy precipitation



### Case from MC3E Oklahoma – Top row S-Band, Bottom row C-Band





0.5° beam blockage for existing radars indicated by white areas within range rings

| Required Measurement             | W-band | Ka-band          | X-band       | C-band           | S-band  | Profilers | OR         |
|----------------------------------|--------|------------------|--------------|------------------|---------|-----------|------------|
| Bragg scatter (boundaries,       |        |                  |              |                  | SPOLKa  |           | OR1        |
| elevated moisture variations)    |        |                  |              |                  |         |           | OR3        |
| 3-D kinematics (multi-Doppler    |        |                  | DOW6         |                  |         |           | OR1        |
| analysis or assimilation)        |        |                  | DOW7         |                  |         |           | OR3        |
|                                  |        |                  | DOW8         |                  |         |           | OR6        |
| Vertical air motion (using Bragg |        |                  |              |                  |         | RWP       | OR1        |
| scatter)                         |        |                  |              |                  |         |           | OR6        |
| Velocity-azimuth display wind    | WSACR  | KaSACR           | DOW6         | CSAPR2           |         |           | OR1        |
| profiles                         |        |                  | DOW7         | RMA              |         |           |            |
|                                  |        |                  | DOW8         |                  |         |           |            |
|                                  | WSACR  | KaSACR           | XPOL         | CSAPR2           | SPOLKa  |           | OR1        |
| Quasi-vertical profiles in       | WSACK  | RASACK           | DOW6<br>DOW7 |                  | SPULKa  |           | OR1<br>OR2 |
| precipitation                    |        |                  | DOW7<br>DOW8 | RMA              |         |           | OR2<br>OR3 |
|                                  |        |                  | XPOL         |                  |         |           | OR6        |
| Non-precipitating clouds         |        | KaSACR           |              |                  |         |           | OR2        |
|                                  |        | KaZR             |              |                  |         |           | OR3        |
| Light rain                       |        | SPOLKa           | DOW6         |                  | SPOLKa  | RWP       | OR2        |
|                                  | WSACR  | KaSACR           | DOW7         |                  |         |           |            |
|                                  | WACR   | KaZR             | DOW8         |                  |         |           |            |
|                                  |        |                  | XPOL         |                  |         |           |            |
| Moderate rain                    |        | SPOLKa           | DOW6         |                  | SPOLKa  | RWP       | OR2        |
|                                  |        | KaSACR           | DOW7         |                  |         |           |            |
|                                  |        | KaZR             | DOW8         |                  |         |           |            |
|                                  |        |                  | XPOL         |                  |         |           |            |
| Heavy rain                       |        | SPOLKa           |              |                  | SPOLKa  | RWP       | OR2        |
| Hail, hail mixed with rain       |        |                  |              |                  | SPOLKa  | RWP       | OR2        |
| Water vapor (refractivity)       |        |                  |              | CSAPR2           | SPOLKa  |           | OR1        |
|                                  |        |                  |              | RMA              |         |           | 0.0.1      |
| Water vapor (dual-wavelength)    |        | SPOLKa           |              | 004000           | SPOLKa  |           | OR1        |
| Claud water                      |        | KaSACR           |              | CSAPR2           |         |           | 000        |
| Cloud water                      |        | SPOLKa<br>KaSACR |              | CSAPR2           | SPOLKa  |           | OR2<br>OR3 |
| Hydrometeor ID                   |        | RASACR           | DOW6         | CSAPR2<br>CSAPR2 | SPOLKa  |           | OR3<br>OR2 |
|                                  |        |                  | DOW0         | COAFIZ           | SFULNa  |           | OR2<br>OR3 |
|                                  |        |                  | DOWI         |                  |         |           | OR5<br>OR6 |
| Multi-wavelength retrievals      |        | SPOLKa           |              |                  | SPOLKa  |           | OR2        |
| (using dual wavelength ratio,    | WSACR  | KaSACR           |              | CSAPR2           | OF OERG |           | OR3        |
| polarization)                    |        |                  |              |                  |         |           | OR6        |
| Microphysical retrievals (using  | WSACR  | KaSACR           |              | CSAPR2           |         |           | OR2        |
| single or multi-wavelength       | WACR   | KaZR             |              |                  |         |           | OR3        |
| Doppler spectra)                 |        |                  |              |                  |         | RWP       | OR6        |



### **Radiosonde Facilities in RELAMPAGO**

| Institution | System Type            | Mobile vs. Fixed (location)                                          | Nominal Release Frequency:<br>RELAMPAGO-IOP | Nominal Release<br>Frequency: CACTI-EOP |
|-------------|------------------------|----------------------------------------------------------------------|---------------------------------------------|-----------------------------------------|
| SMN         | Vaisala RS90 +<br>IMET | Fixed: Córdoba, Mendoza/ (Resistencia,<br>Santa Rosa, Ezeiza, Salta) | 8 x day/(2 x day)                           | 2 x day                                 |
| SMN         | Vaisala RS90           | Portable: Alta Gracia                                                | 1 x hr                                      |                                         |
| SMN         | Vaisala RS90           | Mobile                                                               | 1 x hr                                      |                                         |
| DOE         | Vaisala RS92           | Fixed: Villa Yacanto/ (Villa Dolores)                                | IOP: 8 x day/(2 x day)                      | 2 x day                                 |
| Chile       | Vaisala RS92           | Fixed*: Santo Domingo, Antofogasta                                   | 2 x day                                     | 2 x day                                 |
| Brazil      | Vaisala RS92           | Fixed: Uruguaiana                                                    | 2 x day                                     | 2 x day                                 |
| CSWR        | GRAW (x 2)             | Mobile                                                               | 1 x hr                                      |                                         |
| CSU         | MW41 Digicora          | Mobile                                                               | 1 x hr                                      |                                         |
| UIUC        | IMET (x 3)             | Mobile                                                               | 1 x hr**                                    |                                         |



### O RAOBs

Surface stations:

- SMN surface stations
- Board of Cereals, Córdoba Province
- Universidad de La Punta
- DACC, Mendoza Province

## Lightning in RELAMPAGO

- GOES-R/S GLM validation and science
- Demonstrate use of real time lightning information for nowcasting
- Documents thunderstorm environments, allowing investigation of link between pre-storm environment and subsequent electrification (e.g., anomalous/inverted charge structures common in dry, high-cloud-base environments)
- Provides validation dataset for thunderstorm electrification models



Courtesy S. Goodman





RELAMPAGO Hydrometeorology Extended Observing Period (~1 year)

"What is the role of the land surface in modulating the observed variability of heavy precipitation and flooding in the Carcarañá River Basin?"

- Precipitation gauges
- Surface flux towers
- Meteorological stations
- Streamflow observations
- Groundwater observations



### **RELAMPAGO+CACTI** International Endorsements



- June 2013. WMO World Weather Research Programme (WWRP) JSC endorsement in June 2013
- August 2014. Steve and Paola were invited to present RELAMPAGO during Nowcasting working group sessions before the WWRP-OSC
- August 2014. Steve, Celeste Saulo, and Paola went to WWRP-OSC in Montreal August 2014 and RELAMPAGO was included as an experiment of High Impact Weather Project together with T-NAWEX. RELAMPAGO will focus on heavy precipitation storms/flooding under HIWEATHER project.
- RELAMPAGO is a Forecast Demonstration Project and Research Demostration Project recommended by the WMO Nowcasting and Mesoscale Numerical Modeling Group.
- RELAMPAGO is seeking endorsement from the GEWEX Hydroclimatology Panel; has received positive feedback so far

## **Science and societal impact**

Much research has been done on US Great Plains organized convection, impact?

We believe that addressing RELAMPAGO/CACTI objectives will not only help the community gain a better perspective on extreme convection globally, as it differs in its characteristics and forcing from region to region.

The knowledge gained from RELAMPAGO/CACTI will improve understanding, models, and high impact weather and climate prediction around the world.

Tailor existing and develop new tools for emergency management for HIWeather informed by the user community



hombre protegiendo su auto de granizo

# ¡Gracias! ¿Preguntas?

Informatión de contacto Prof. Steve Nesbitt University of Illinois snesbitt@illinois.edu

Prof. Paola Salio UBA/CIMA/CONICET salio@cima.fcen.uba.a