GoAmazon2014/5: 1 Jan 2014 to 31 Dec 2015

IOP1: wet season 2014 (1 Feb — 31 Mar), IOP2: dry season 2014 (15 Aug — 15 Oct)

1973

1978
1988
1998
M 2008




Transverse
Transects of

Urban
Plume

500 m

11 AM local
13 March
2014

'Google‘earth

Data SIO, NOAA, US. Navy, NGA, GEBCO
Image Landsat
Image © 2014 DigitalGlobe







secondary organic aerosols using the WRF-Chem model
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Results

» G-1 data shows particle size and
oxidation state increase with aging,
indicating SOA formation downwind
of Manaus

» Finding enhancements in biogenic SOA, up to 80%, due to anthropogenic and fire
emissions that increase oxidants within the background Amazon, thus increasing SOA

» Including a more detailed treatment of biogenic SOA chemistry (e.g., IEPOX), and effects
of NO, regimes on SOA, evaluating model predictions based on field measurements




Amazon Basin has strong coupling between terrestrial ecosystem and the
hydrologic cycle: The linkages among carbon cycle, aerosol life cycle,
and cloud life cycle need to be understood and quantified.
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Plant physiological functions in the tropics%m

Results:

INSTITUTO NACIOMAL DE
PESQUISAS DA AMAZONIA
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Objective: Leaf response curves of photosynthesis with isoprene in Amazonia.

« Supports function of isoprene through excess photosynthetic energy consumption

« a protective role of isoprene for photosynthesis during high temperature extremes
regularly experienced in secondary rainforest ecosystems.
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As light increases, non-linear increase in
Isoprene emissions and photosynthesis.
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uncouple at high leaf temperature

Jardine, K. J., Jardine, A. B., et al., Atmos. Chem. Phys. Discuss., 2016, GoAmazon2014/5 Special Issue.



Characterization of Urban Environment (T1u)

Objective:
Characterize pollution source region

Brito, Artaxo, Barbosa, Souza, et al., in prep,
GoAmazon2014/5 Special Issue
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Hydroxyl Radical Concentrations

Objective: Measure OH radical concentrations in light of literature possibly suggesting
sustained high concentrations over tropical forest because of radical recycling

Result: GoAmazon2014/5 measurement show concentrations are normal, instead of elevated,
during wet and dry seasons (IOP1 and IOP2).
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Isoprene Chemistry over
the Amazon Rain Forest

Liu, Martin, et al., PNAS, in press
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= Observational constraints of anthropogenic influence.
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= Underestimate of the NO pathway for background conditions.



What are the sources of ultrafine aerosol particles in the Amazon?
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New view on gas & particle phase partitioning
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More Secondary Aerosol Potential than Expected

Objective:

Test through in situ data sets the potential for secondary aerosol production and compare to state
of understanding with respect to known species and their reactive yields
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o Secondary aerosol produced from oxidation by OH of ambient air
* Production much greater than predicted from modeled yields of measured ambient

precursors

e Suggests that production is dominated by unmeasured species

Palm, Jimenez, et al., in prep. for GoAmazon2014/5 Special Issue
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, of anthropogenic emissions on isoprene:
~.derived particulate matter in central Amazonia

Jor

lN 0

lO H
Isoprene
15 0):¢

THOZ/OH

(Gas phase

= Observational constraints of sulfate as a first
order predictor and NO as a modulator of
IEPOX-derived PM.

= NO, serves as indicator of integrated
exposure of airmass to NO chemistry.

= [IEPOX-SOA factor obtained from PMF
analysis of AMS data is a proxy for
IEPOX-derived PM.

= Lower loadings of IEPOX-SOA factor observed
for polluted compared to background conditions

S. de Sa, L. Alexander, S. Martin et al., in prep.
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Submicron Particles are Liquid

Objective: Investigate ambient particle physical state over a tropical
forest as a function of relative humidity using particle rebound.
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Glassy Rebound Particles at T3 but not TOz

Observation
= Glassy spherical particles common at T3
— Not observed at TOz

Interpretation
— Particles are associated with human activities
= Similar observations at SGP just published:
Laskin, Gilles, et al., Nature Geoscience, (2016)
in press, doi:10.1038/nge02705. Evidence that
particles at SGP are from raindrop impaction on
open soils.
= Working hypothesis: similar origins in and
around Manaus.
= For this hypothesis, these particles are not
directly from pollution plume of Manaus but
rather are from agricultural fields between
Manaus and T3.
= The implication could be that deforestation
changes composition of atmospheric
aerosol.
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Cloud Condensation Nuclei (CCN) Activity

Objective:
Investigate the effects of anthropogenic pollution on the CCN activity of particulate
matter over a tropical rainforest

Results:

 Dominated by low-hygroscopicity organic species

« Manaus plume affects the Aitken mode, with greater oxidation further downwind
(T2 compared to T3)
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Presenter
Presentation Notes
DATA:
T0= average of the whole year
T2= Polluted is just Feb/2015 (hence only manaus, no biomass burning); T2/BB is Sep/15 until Oct/15 2014 (that month of high BB regional)
T3= Ryan’s criteria to separate, all year, into the three classifications.

What I see here:
Background => T0/ATTO and T3-Clean agree with preivous campaign (Gunthe)
Pollution => T2 is lower than T3-polluted only for small particles (<=100nm). They should grow
Biomass Burning=> I don’t understand why T2 is lower than T3 for small sizes. If the Manaus plume (higher values) is mixed with the BB, the results should be more higroscopicity, right??


Effect of urban pollution on Amazonas cloud properties

Objective

Understand the Manaus Plume
In the cloud microphysics.
First time cloud-aerosol-
precipitation is studied during
the Amazonas wet season
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Micael A. Cecchini, Luiz A.T. Machado et al., ACPD, GoAmazon2014/5 Special Issue


Presenter
Presentation Notes
Here is a possible slide that highlights the rich convective data sets�that we are working with during GoAmazon. The story, which repeats�itself in some form during each event, is that when a convective system�approaches T3 (as seen by the SIPAM radar), downdrafts associated with�strong rain in the convection (as seen by the RWP) reach the surface�bringing down colder, lower theta-e, higher ozone air from mid-levels�(as seen by the T3 AMF surface met instruments). The various groups�associated with these data sets have been compositing the 100+ events�observed during GoAmazon to better understand the characteristics of�convective downdrafts, cold pools, and ozone surface enhancement in the�Amazon.


Vertical motions, cold pools and ozone
transport In Amazonian convection
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Presenter
Presentation Notes
Here is a possible slide that highlights the rich convective data sets�that we are working with during GoAmazon. The story, which repeats�itself in some form during each event, is that when a convective system�approaches T3 (as seen by the SIPAM radar), downdrafts associated with�strong rain in the convection (as seen by the RWP) reach the surface�bringing down colder, lower theta-e, higher ozone air from mid-levels�(as seen by the T3 AMF surface met instruments). The various groups�associated with these data sets have been compositing the 100+ events�observed during GoAmazon to better understand the characteristics of�convective downdrafts, cold pools, and ozone surface enhancement in the�Amazon.


0Amazon2014/5 Deep Convective Vertical Velocity and Mass Flux

Objective: Characterizing domain-aggregated and averaged vertical velocity, convective
area fraction, and mass flux profiles to inform GCM deep convective parameterizations.

Results: GoAmazon2014/5 data sets have provided new insights into deep convection,
including the role of environmental forcing controls on areal coverage, confirming more

intense convection found within the dry season, and substantial increases in updraft
mass flux during the wet season.
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Presenter
Presentation Notes
(Aside; I'd note that 'retrieving' vertical velocities and presenting those observations from deeper convection in context with environmental controls, while it may not sound all that complicated, is relatively unique - Simply put, there is just not that much information out there on vertical velocities for constraining GCM modeling efforts w.r.t convective intensity and areal coverage. This is arguably the largest dataset that links such properties (and environmental forcing) to date - so, while this may not seem all that exciting - it is the sort of low-hanging / 'scratching an itch' element most modelers want (and do not currently have). That it also comes during GoAmazon (a campaign not necessarily intended to provide such insights) is also encouraging).


Propagatlon and Diurnal Variability of Convection

Casey Burleyson, Zhe Feng, Samson Hagos, and Jerome Fast (PNNL)
Luiz Machado (INPE) and Scot Martin (Harvard)

- o i et
» Used 15-years of satellite data to examine the spatial variability of convection around the
GoAmazon2014/5 sites.

Frequency of Convection [1700-1800 LT, Mar- Apr May]

Pacific Northwest
NATIONAL LABORATORY

Findings

» Previous day’s “sea breeze
front” arrives in phase with
diurnal cycle of convection near
Manaus.

» TOe, TOt/k, and T1 see up to
10% more frequent afternoon
convection compared to T3 due
to their position east of the river.

61°W  B0°W  59°W

Burleyson, C. D., Z. Feng, S. M. Hagos, J. Fast, L. A. T. Machado, and S. T. Martin, 2016: Spatial variability of the
background diurnal cycle of deep convection around the GoAmazon2014/5 field campaign sites. In Revision for J. Appl.
Meteor. Climatol. — April 2016.



Data Sets
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ARM.gov » Campaigns » Observations and Modeling of the Green Ocean Amazon (COAMAZON)

Campaign : Observations and Modeling of the Green Ocean Amazon
(GOAMAZON)

2014.01.01 - 2015.11.30

Website : http://www.arm.gov/sites/amf/mao/
Lead Scientist : Scot Martin

For data sets, see below.

Abstract

The hydrologic cycle of the Amazon Basin is one of the primary heat engines of the Southern
Hemisphere. Any accurate climate model must succeed in a good description of the Basin, both in its
natural state and in states perturbed by regional and global human activities. At the present time,
however, tropical deep convection in a natural state is poorly understood and modeled, with
insufficient observational data sets for model constraint. Furthermore, future climate scenarios
resulting from human activities globally show the possible drying and the eventual possible
conversion of rain forest to savanna in response to global climate change. Based on our current state
of knowledge, the governing conditions of this catastrophic change are not defined. Human activities
locally, including the economic development activities that are growing the population and the
industry within the Basin, also have the potential to shift regional climate, most immediately by an
increment in aerosol number and mass concentrations, and the shift is across the range of values to
which cloud properties are most sensitive. The ARM Climate Research Facility in the Amazon Basin
seeks to understand aerosol and cloud life cycles, particularly the susceptibility to cloud aerosol
precipitation interactions, within the Amazon Basin.

The ARM Mobile Facility will be located downwind of the city of Manaus, Brazil (36" 47" S, 60 1" 31"
W) near Manacapuru from January 2014 to November 2015. The site is situated so that it experiences
the extremes of (i) a pristine atmosphere when the Manaus pollution plume meanders and (ii) heavy
pollution and the interactions of that pollution with the natural environment when the plume
regularly intersects the site. The central Amazon where this site is located is only weakly influenced
by biomass burning emissions in the dry season. The city of Manaus uses high-sulfur oil as its primary
source of electricity; the city is also an industrial zone of 3 million people and has high emissions of
soot. Particle number and mass concentrations are 10 to 100 times greater in the pollution plume
compared to the times when pristine conditions prevail. The deployment will enable the study of how
aerosol and cloud life cycles, including cloud-aerosol-precipitation interactions, are influenced by
pollutant cutflow from a tropical megacity.

Additional Information

» GoAmazon2014/5 results appear in an interjournal Special Issue of Atmospheric Chemistry Physics
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Observations and Modeling
of the Green Ocean Amazon
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2015.03.13, de Mello Dias
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2014.10.05, Barbosa, AMF
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2014.05.12, Schumacher,
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2014.05.01, Dubey, AMF
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Seasonality of isoprenoid emissions from a primary rainforest in central Amazonia
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Characterization of a real-time tracer for isoprene epoxydiols-derived secondary
organic aerosol (IEPOX-SOA) from aerosol mass spectrometer measurements
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