LASSO modeling & measurements update
LES ARM Symbiotic Simulation & Observation Workflow

William I Gustafson Jr. (PI)\(^1\), Andy Vogelmann (Co-PI)\(^2\), Zhijin Li\(^3,4\), Xiaoping Cheng\(^3\), Satoshi Endo\(^2\), Tami Toto\(^2\), Heng Xiao\(^1\)

Jennifer Comstock\(^1\)

\(^1\)PNNL, \(^2\)BNL, \(^3\)UCLA, \(^4\)JPL

LASSO Webpage: http://www.arm.gov/science/themes/lasso

LASSO e-mail list sign up: http://eepurl.com/bCS8s5
The LASSO Vision

- Bridging the scale gap between ARM observations and models
- Use LES to add value to ARM observations
 - Self-consistent representation of the atmosphere
 - Provide a dynamical context for the observations
 - Elucidate unobservable processes & properties
- Generate a simulation library for researchers
 - Enable statistical approaches beyond single-case mentality
 - Provide tools necessary for modelers to reproduce the LES
What can you do with an Obs+LES library?

- **As an observationalist**
 - Inform instrument remote sensing retrievals
 - Conduct Observation System Simulation Experiments (OSSEs)
 - Test implications of radar scan strategies or flight paths

- **As a theoretician**
 - Get estimates of fluxes & co-variability of values
 - Test relationships w/o having to run the model yourself

- **As a modeler**
 - Know ahead of time which days have good forcing
 - Have co-registered observations at high-resolution scales
 - Have inputs and corresponding outputs to test parameterizations
Learning to walk before we run

- Initial implementation is a proof-of-concept and targets shallow convection at SGP
 - Develop the ARM infrastructure for doing routine LES
 - Test interfaces and visualization methodologies for accessing the LASSO library

- Long-range vision is to later expand to multiple ARM locations and additional cloud regimes
The road to LES at SGP

Goal of running routine LES for shallow convection in 2017
The 2-yr LASSO pilot project

- Modular structure for flexibility and future growth
- Major focus on getting functionality in place and improving it over time
 - Implementing methods that already work
 - No time to experiment with untested methodologies

LES ARM Symbiotic Simulation and Observation (LASSO) Workflow

1. Observational Compilation & Scene Classification
2. Generate Ensemble Forcing Data
3. Run Model Simulations
4. Merged Model-Observation 4D Data Bundle
5. User Interface for Analysis and Visualization

Refinement of LASSO & Measurement Strategies

ARM & External Data

User Group Feedback

Process Understanding, Modeling & Parameterization Studies

Climate Model Improvement
SGP Megasite Supports Integrated Measurements-Model Strategy

SGP Megasite Concept: a network of spatially distributed facilities designed to characterize the heterogeneity in atmospheric and land properties around the SGP site. This network addresses a range of science themes using an observations and modeling strategy.

Measurement Enhancements:
- Boundary Layer Profiling Modules (4 locations)
- Upgrades to AOS and Raman Lidar Instruments
- Improved soil moisture network (17 locations)
- Plans to deploy multiple scanning cloud radars
The Southern Great Plains Megasite

Service Layer Credits:

E9 - Ashton, KS. 386m
E11 - Byron, OK. 360m
E12 - Pawhuska, OK. 331m
E13 - Central Facility. 318m
E15 - Ringwood, OK. 418m
E31 - Anthony, KS. 412m
E32 - Medford, OK. 316m
E33 - Newkirk, OK. 357m
E35 - Tryon, OK. 294m
E36 - Marshall, OK. 340m
E37 - Waukomis, OK. 379m
E38 - Omega, OK. 367m
E39 - Morrison, OK. 279m
E40 - Pawnee, OK. 247m
E41 - Peckham, 341m
E51 - Anthony, KS. 412m
E61 - Byron, OK. 360m
E62 - Medford, OK. 316m
E63 - Newkirk, OK. 357m
E65 - Tryon, OK. 294m
E76 - Marshall, OK. 340m
E77 - Waukomis, OK. 379m
E78 - Omega, OK. 367m
E91 - USGS 10m DEM Elevation in meters.

IF Locations (Precipitation Radar)
IF11/12 (Scanning Cloud Radar)
EF/Boundary Layer Profiling Site
EF Locations
IF Locations
70 km Radius Around CF

Elevations:
- 167 - 200
- 201 - 220
- 221 - 240
- 241 - 260
- 261 - 280
- 281 - 300
- 301 - 320
- 321 - 340
- 341 - 360
- 361 - 380
- 381 - 400+

2011 USGS 10m DEM Elevation in meters.
Boundary layer profiling sites

Enhance knowledge of spatial heterogeneity of state variables, fluxes, and soil properties.

Improved Retrievals with Uncertainty Estimates

- AERI
- Doppler Wind Lidar
- SKYRAD
- Radiative Fluxes
- ECOR
- DLPROFWIND
- Newsom et al.
- MWR3C
- Turner et al.
- Cadeddu et al.
- Latent & Sensible Heat
- Temp
- WVMR
- PWV
- LWP
- MWR3C
- Latent & Sensible Heat
- ECOR
- Wind Speed & Direction
- Enhanced knowledge of spatial heterogeneity of state variables, fluxes, and soil properties.
Situationally-dependent LES—not 24/7

- Simulations done when conditions are met
 - “Routine” instead of “operational”
 - 1–2 month lag time to account for needed VAPs and compute time
 - Contingent on available observations & presence of ShCu
- New cloud classification scheme by Sunny Lim

![Cloud classification diagram](image)

- Cirrus
- Cirrostratus
- Altostratus
- Altocumulus
- Deep Conv.
- Congestus
- Low clouds
Ensemble of forcing datasets

Employ forcing ensembles to address forcing uncertainty

Testing 3 forcing methods during pilot phase

- ARM constrained variational analysis (VARANAL)
- ECMWF-analysis–based forcing
- Multi-scale data assimilation (MS-DA)
 - Based on WRF with GSI using two different error covariance scales
 - Initially using 3D-Var DA and plan to test hybrid EnKF DA
Multi-scale data assimilation

- Start with a gridded background field, e.g. FNL
- Incorporate ARM T, q, and wind profiles from boundary/intermediate facilities
- Provides a 3-D volume every 3 hours for generating LES forcing

Cloud Fraction from $\Delta x=2$ km MS-DA

Averaged over 25 km
Averaged over 75 km
Averaged over 150 km
Averaged over 300 km

ARSCL Cloud Fraction

[Graph showing cloud fraction over different scales]
Model selection & configuration

- Evaluating both SAM & WRF during pilot phase
- Testing doubly-periodic & nested LES domains
- Initially targeting 25-km domain, $\Delta x=100$ m
- Current tests with model top near tropopause
Data bundles

- Data bundles will provide the primary interface for LASSO data
- Contain observation & model output in comparable forms
 - Appropriate time sampling
 - Instrument simulators
- Include pre-computed quick-looks, metrics, and diagnostics to assist data discovery and quicken user analysis
- Include 3-D model fields, profile statistics, model-based budget terms, and GCM parameterization terms.
- Forcings and initial conditions provided for users to conduct their own sensitivity studies.
Data bundle metrics

- LES simulations assessed using diagnostics based on ARM observations of cloud and environmental properties
 - E.g., Time series, Regression analyses, Taylor diagrams, Heat maps, and Phase space relationships
- Skills scores based on the diagnostics will quantify the quality of the simulations
 - e.g., LWP, cloud fraction, temperature, water vapor concentration, relative cloud forcing, vertical velocity, etc.
- Searchable metrics will assist users in finding cases of interest.
Data discovery

- Search on metric values and selected conditions
 - Evaluating ways to search based on model-observation agreement and case descriptors

- Testing methods to permit robust search capabilities and on-the-fly event comparison
 - E.g., Cassandra NoSQL database
 - Tiered levels of complexity with user needs and sophistication
Data access & software tools

- Reproducibility is paramount
 - Will provide all workflow software, model code, and configurations to enable others to reproduce the runs
 - Designing workflow to run on both ARM and other DOE computing facilities

- Goal of enabling easier data access/transfer from the ARM Archive via Globus
<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 2015</td>
<td>Pilot project began</td>
</tr>
<tr>
<td>June 2016</td>
<td>Initial ShCu simulations from spring-summer 2015 made available</td>
</tr>
<tr>
<td></td>
<td>• Ensemble of forcings</td>
</tr>
<tr>
<td></td>
<td>• LES simulations from SAM and WRF (bulk microphysics)</td>
</tr>
<tr>
<td></td>
<td>• Observations in comparable form</td>
</tr>
<tr>
<td></td>
<td>• First cut at metrics and diagnostics</td>
</tr>
<tr>
<td>January 2017</td>
<td>2<sup>nd</sup> batch of ShCu simulations from spring-summer 2016</td>
</tr>
<tr>
<td></td>
<td>• Will include influence of boundary facility profiles</td>
</tr>
<tr>
<td></td>
<td>• Both bulk and spectral-bin microphysics versions</td>
</tr>
<tr>
<td>April 2017</td>
<td>Additional test cases for year-round shallow cloud conditions</td>
</tr>
<tr>
<td></td>
<td>Beta software suite</td>
</tr>
<tr>
<td></td>
<td>Recommended configurations for ongoing simulations</td>
</tr>
<tr>
<td>May 2017</td>
<td>Pilot project over and transition to routine simulation mode</td>
</tr>
</tbody>
</table>
Learn more about LASSO

- **Breakout session**, Wed. 7:30–9:30 p.m.
- **Posters**
 - 145: Gustafson, The LASSO Workflow Pilot Project
 - 147: Endo, LASSO Workflow: Ensemble forcings and LES sensitivity
 - 146: Vogelmann, LASSO Workflow: model-observation “data cubes”
 - 148: Comstock, Boundary layer profiling modules...
 - 137: Lim, Development of cloud-type classification algorithms...
 - 139: Kollias, Radar network approach to characterize ShCu at SGP
 - 138: Krishna, Large-scale data analysis and vis. for ARM using NoSQL

- **Website:**
 - http://www.arm.gov/science/themes/lasso

- **E-mail list:** http://eepurl.com/bCS8s5