Effects of cloud superparameterization at the land-atmosphere interface

> Mike Pritchard Assistant Professor University of California, Irvine

Acknowledging UCI researchers: Jian Sun, Hossein Parishani, and Gabe Kooperman **Cloud superparameterization**

Examples of progress using superparameterized algorithms in fixing long-standing problems linked to deep convection.

- More realistic intensity distribution of rainfall
- Missing weather patterns emerge
 - Central US mesoscale convective systems
 - The Madden-Julian Oscillation

Energy limitations are morphing supercomputers in new ways. Power density / cooling demands of multi-core systems hitting a limit.

Source: Kogge and Shalf, IEEE CISE Courtesy of Horst Simon, LBNL

Serial CPU clock speeds are not increasing.

Source: Kogge and Shalf, IEEE CISE Courtesy of Horst Simon, LBNL Superparameterization is well situated to exploit new emerging forms of co-processor computing power.

- Communication bottlenecks often limit access to new forms of co-processor computing power.
- Especially for climate simulation, which involves a <u>lot</u> of communication.
- Superparameterization is an unusually lowcommunication algorithm.
- Serious potential to computationally expand the paradigm.

How can super-parameterization impact land-surface energy exchange?

Part I.

Assessment of land-atmosphere coupling in SPCAM3.5 versus CAM3.5

Sun and Pritchard, in review for JAMES

Simulations

- SPCAM v3.5 versus CAM v3.5
- 20-year AMIP simulations; SSTs prescribed.
- ~2.5 degree global resolution.
- In SPCAM, embedded cloud-resolving models with 8 CRM columns spaced 4 km apart.

Terrestrial segment.

Terrestrial coupling index (Dirmeyer 2011)

 $I_{\phi} = S_w \beta_{\phi}$

soil water variability -

regression slope vs. soil water

JJA "ILH" from the Global Soil Wetness Project GSWP-2

Effect of superparameterization on "ILH" during JJA

JJA SP-CAM

CAM

Sun and Pritchard, in review

Several favorable regional effects.

Removal of unrealistic coupling across Northern Africa, Middle East; enhanced coupling contrast across ITCZ.

JJA SP-CAM

CAM

-45 -30 -15 0 15 30 45

JJA GSWP v2 Dirmeyer (2011)

Enhanced negative coupling over Central / Eastern China.

JJA SP-CAM

CAM

-45 -30 -15 0 15 30 45

JJA GSWP v2 Dirmeyer (2011)

Enhanced wet season negative tropical rainforest coupling

DJF SP-CAM

-45 -30 -15 0 15 30 45

DJF GSWP v2 Dirmeyer (2011)

-15 -10 -5 5 10 15 20 25 30 35

Atmospheric segment.

"**TFS**" from the North American Regional Reanalysis:

Superparameterization reduces the triggering feedback strength (TFS).

SP-CAM

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

More realistic land-atmosphere triggering over US.

SP-CAM

NARR Findell et al. 2011

PFSLCL

SP-CAM

CAM

In CAM, a disconnect between convective triggering versus PBL sensitivity to morning evaporative fraction.

Part II.

An unintended effect of superparameterization at the land interface revealed by ARM data.

Pritchard et al, in prep

Bettsian mixing diagrams following the LoCo ("local coupling") approach of Santanello et al.

- For a given time step, plot 2m T&Q in energy space;
- Surface vector can be calculated with PBL height, H_{sfc} and LE_{sfc} ;
- Residual vector then can be derived from the T-Q trajectory and surface vector, which represent the atmospheric response including entrainment, advection, etc.

Composite mixing diagrams for models versus ARM SGP.

Climatological diurnal cycle from 15 independent realizations of JJA

The spurious 2-m moisture cycle is not unique to SGP.

SPCAM CAM

PBL-integrated energetics tell a different story than 2-m mixing diagrams, suggesting it is not a fundamental change in entrainment dynamics.

2-m state is not a robust proxy for whole-PBL model differences in LoCo mixing diagrams.

Implies problem is <u>close to the surface</u>.

Vertically resolved humidity tendency vs. data highlights key **symptom**:

- Unobserved early morning surface moistening.
- Followed by strong late morning drying

SP-CAM

ARM SGP DATA

The essence of the bias can be reproduced in short hindcast simulations, which opens the door to understanding it.

(5-day 6/20/1997 hindcast, all land grid points 20S-60N)

What causes the spurious moisture bump?

H1: Insufficient CRM resolution

Motivation: Known artifacts of coarse cloud resolving resolution.

WRF-LES convergence tests of continental PBL development a

Figures from Jason Simon, Civil Engineering, Berkeley — AGU 2015 poster.

What causes the spurious moisture bump?

H1: Insufficient CRM resolution

Expect: Radically higher CRM resolution removes the bump.

Standard superparameterization grid structure

"Ultraparameterization"

(Now affordable for 5-day hindcasts)

Insensitivity to cloud-resolving resolution.

What causes the spurious moisture bump?

H1: Insufficient CRM resolution

Clue: bump is associated with surface flux magnitude.

What causes the spurious moisture bump?

H1: Insufficient CRM resolution

Sensitive to surface flux screening

H2: Something is wrong with the way surface fluxes are transmitted to the CRM

Context.

Standard CAM boundary layer parameterization:

In the context of the greater integration circuit.

In the context of the greater integration circuit.

When superparameterization is used...

Problem: Dynamics is called in between PBL and superparameterization in SPCAM.

Potential fix: Wait to apply surface fluxes.

Consistent with expectation, bump disappears.

What causes the spurious moisture bump?

H1: Insufficient CRM resolution

H2: Something is wrong with the way surface fluxes are transmitted to the CRM

Unintended order of flux / dynamic adjustment operations found

> Correcting it removes the moisture bump symptom

Promising changes in coastal low cloud fraction

Stay tuned!

Meanwhile, ARM data & CAPT hindcasts point to value of vertical resolution and issues of chronic daytime overentrainment.

SPCAM 8x1

CAM

UltraCAM 8x8 (*hi-res helps*)

MERGESONDE DATA

Local solar time

Summary.

Favorable effects of super parameterization on landatmosphere coupling.

- Terrestrial segment:
 - Reduced N. African, Middle-East positive JJA coupling; enhanced cross-ITCZ contrast; enhanced E. China JJA negative coupling; enhanced DJF rainforest negative coupling.
- Atmospheric segment:
 - Probability of afternoon rainfall less sensitive to surface state in inappropriate regions.
 - Synchrony emerges across rainfall triggering, PBL height and LCL sensitivities to surface wetness.

ARM data is proving quite useful for improving superparameterized climate models.

- Mixing diagram analysis at the SGP site turned up a spurious near-surface moisture cycle in SPCAM.
- Symptom of underlying issue in how surface fluxes are transmitted to its cloud resolving models.
- Inadvertently exposes the dynamical core to an incompletely adjusted subgrid physics tendency.
- This may have limited the potential of <u>all previous</u> SPCAM simulations.

Thanks.