# Agenda for today

- Some background Framing the problem
- Short presentations:
  - Jim Hudson: Processing of aerosols in clouds
  - R Subramanian and Claudio Mazzoleni: SP2 and SEM
  - Matthew Fraund and Ryan Moffet: STXM and SEM/EDX
  - Joseph Ching: SP2, SPLAT and modeling
  - Tim Onasch: BC 4 study
  - Alla Zelenyuk and Aiken/Dubey: SAAS campaign
- Discussion

| Process<br>Readiness Level | Requirements for a process to be<br>at a certain PRL                                                       | Example of a<br>process at a<br>certain PRL |  |  |
|----------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------|--|--|
| PRL 5:                     | <b>Extensive validation</b> performed against observational data, <b>uncertainty quantified</b>            | inorganic<br>gas<br>CCN                     |  |  |
| PRL 4:                     | <b>Process implemented</b> in a regional or global model; Process-level verification                       | activation                                  |  |  |
| PRL 3:                     | Quantitative process model: Set of ODEs with known rate functions                                          | BC aging<br>SOA                             |  |  |
| PRL 2:                     | Qualitative description of process: When and where does it occur? What are the reactants and the products? | formation                                   |  |  |
| PRL 1:                     | Phenomenon observed in the field                                                                           | Ice<br>nucleation                           |  |  |

## Questions for today

- No single instrument that can characterize the full "mixing state" of an aerosol population.
- How can we integrate the different experimental techniques to characterize mixing state as fully as possible?
- How can we use this information to compare to mixingstate-aware models?
- We solicit short presentations that show your work or ideas on
  - (a) comparing mixing state information between different measurement platforms
  - (b) compare measured mixing state information to simulated mixing state.

## Aerosol Population: Modelers wish



#### **Aerosol Population: Reality**



Li et al., Atmospheric Environment, 45, 2488-2495, 2011

How much detail is needed to capture aerosol impacts in large scale models?

### Mixing state terminology: Chemical composition

On the particle level: Chemical composition diversity



**On the population level:** Mixing state associated with chemical composition How are the chemical species distributed over the population?



## Mixing state terminology: Morphology

On the particle level: Physical morphology



тм





highly compact

semicompact

lacy

#### On the population level: Mixing state associated with morphology





### How important are these details?

Key question 1:

What is the impact of mixing state on CCN, IN, optical properties?

Key question 2:

How should we include mixing state information in models that quantify aerosol climate impacts?

- What aerosol mixing states exist in different environments?
- How can we connect measurements (lab and field) to each other and to modeled mixing state information?
- What mixing state information should be measured in the field and in the lab?

## Mixing state matters

Change in equilibrium annual mean surface air temperature (K)



"[...] These results confirm that the mixing state of BC with other aerosols is important in determining its climate effect."

### Mixing state matters

Calculated absorption enhancement using average composition

+

Calculated averaged absorption enhancement using per-particle composition



#### Mixing state matters



Ching et al., J. Geophys. Res., 121, 5912–5929 (2016)









#### Given that we have mixing state aware models

- 1. How do we initialize models using measured mixing state information?
- 2. How do we compare models and measurements?

# Agenda for today

- Some background Framing the problem
- Short presentations:
  - Jim Hudson: Processing of aerosols in clouds
  - R Subramanian and Claudio Mazzoleni: SP2 and SEM
  - Matthew Fraund and Ryan Moffet: STXM and SEM/EDX
  - Joseph Ching: SP2, SPLAT and modeling
  - Tim Onasch: BC 4 study
  - Alla Zelenyuk and Aiken/Dubey: SAAS campaign
- Discussion

## Connections between Different Tools: Progress

|                                          | Theory/<br>Metrics <sup>1</sup> | PRM <sup>2</sup> | SP2 <sup>3</sup> | Micros-<br>copy <sup>4</sup> | SP mass<br>spectro-<br>metry <sup>5</sup> | Bulk<br>measure-<br>Ments <sup>6</sup> | Remote sensing <sup>7</sup> | RM/<br>GCM <sup>8</sup> |
|------------------------------------------|---------------------------------|------------------|------------------|------------------------------|-------------------------------------------|----------------------------------------|-----------------------------|-------------------------|
| Theory/<br>Metrics <sup>1</sup>          |                                 | high             | medium           | medium                       | low                                       | low                                    | low                         | low                     |
| PRM <sup>2</sup>                         | high                            |                  | medium           | medium                       | medium                                    | high                                   | low                         | low                     |
| SP2 <sup>3</sup>                         | medium                          | medium           |                  | medium                       | medium                                    | high                                   | low                         | low                     |
| Micros-<br>copy <sup>4</sup>             | medium                          | medium           | medium           |                              | medium                                    | medium                                 | low                         | low                     |
| SP mass<br>spetro-<br>metry <sup>5</sup> | low                             | medium           | medium           | medium                       |                                           | medium                                 | low                         | low                     |
| Bulk<br>measure-<br>ments <sup>6</sup>   | low                             | high             | high             | medium                       | medium                                    |                                        | high                        | medium                  |
| Remote sensing <sup>7</sup>              | low                             | low              | low              | low                          | low                                       | high                                   |                             | high                    |
| RM/<br>GCM <sup>8</sup>                  | low                             | low              | low              | low                          | low                                       | medium                                 | high                        |                         |