# A perspective on biomass burning research

DOE ASR/ARM

Sedlacek, Yokelson, et al.

### Radiative Forcing Contribution of Biomass Burn (BB) Aerosols

#### Scientific Challenge:

To understand and quantify the role of BB in aerosol forcing (heating/cooling)

 Investigate the evolution of chemical, hydroscopic, microphysical, and optical properties of biomass burn aerosols in the near field

What is the **minimum knowledge** needed to accurately parameterize the contribution of biomass burn aerosols to radiative forcing?



### **Current DOE Research**

(incomplete....)

- Field
  - Biomass Burning Observation Project (BBOP)
    - Characterizing near-field biomass burning emission
  - Layered Atlantic Smoke Interactions with Clouds (LASIC)
    - Studying biomass burning emissions interactions with clouds
  - Green Ocean Amazon (GOAmazon)
    - Dry season offers targets of opportunity to study BB in rainforest
- Laboratory
  - Tar balls
- Modeling

### Current State of the Science...

Fire research and gaps in our understanding linked to air quality forecasting **Bob Yokelson** University of Montana and FIREX Steering Committee

Biomass burning is a global issue with poorly characterized sources that effects human health, ecosystems, visibility (air quality), & climate.

### 2013 MODIS Active Fire Detections from the Aqua and Terra satellites





January February March April May June July August September October November December



### **Global Emissions Tg per year**

| Source     | Total C                    | gas-phas                 | se NMOC                  | Primary PM2.5 |                        |
|------------|----------------------------|--------------------------|--------------------------|---------------|------------------------|
|            |                            | VOC                      | SVOC                     | ВС            | OC                     |
|            |                            |                          |                          |               |                        |
| FF (Total) | 7000                       | 200                      |                          | 3             | 2                      |
|            |                            |                          |                          |               |                        |
| BB (Total) | 4600 ( <mark>6300</mark> ) | 200 ( <mark>365</mark> ) | 200 ( <mark>365</mark> ) | 5 (5.7)       | 32 ( <mark>53</mark> ) |
|            |                            |                          |                          |               |                        |
| Biogenic   | 1000                       | 800                      | 200                      | <br>          | 7                      |

Sources: Akagi et al 2011; Bond et al 2013; Guenther et al 2006; 2012; Heald et al 2009

### Science focus areas

- 1. Quantifying BB emissions (wildfire & agricultural burn) including bottom-up and top-down approaches
- 2. Quantify BB emissions during nighttime
- 3. Represent the highly variable spatially and temporally components of emissions and understand fresh plume dynamics
- 4. Characterize chemistry of emissions and understand chemical evolution and SOA in downwind plume
- 5. Understand smoke cloud interactions

# Quantifying BB emissions (wildfire & Agricultural burn) including bottom-up & top-down approaches

### Under Sampling of BB Emissions

- Until recently, very few measurements of the emissions from wildfires and crop-residue burning in the US
- This is starting to change as biomass burning becomes more of a science focus
  - 2013 DOE ARM BBOP
  - 2013 NASA SEAC4RS
  - 2016-2019 NOAA FIREX
  - 2019 NASA FIRECHEM
  - 2018-2021 Joint Fire Science Program (JFSP), DoD, and ESTCP sponsored FASMEE studies



Operational input: How much burns? bottom up Orbital gaps, clouds, cloud mask, canopy, timing, small fires, ~10-20% detection rate active

### Operational input: How much burns? bottom up



### Operational input: How much burns? bottom up



Look more, see more, limits of "persistence"

### Operational input: a-priori scaling factors in inversions

| Study                     | "scaling factor" | What/where                          |  |
|---------------------------|------------------|-------------------------------------|--|
| Kopacz et al<br>(2010)    | 2                | CO/<br>SE-Asia, Africa, +           |  |
| Bond et al<br>(2013)      | 4                | BC absorption/<br>Southern Hemi     |  |
| Van der Werf et al (2010) | 19               | Ag-fires/<br>CONUS                  |  |
| Lu and Sokolik<br>(2013)  | 10               | AOD/<br>Canada                      |  |
| Reddington et al (2016)   | 1.5 (FINN)       | AOD, Surface<br>PM/Brazil, Thailand |  |

### Operational input: How much burns? Top down



### **Operational input:** major uncertainties

<u>Summary</u>: smoke amount, chemical and optical props of both fresh and aged, evolution, mapping.

### Smoke production bottom up:

- Burned area uncertainty
- Misassigned fuel consumption per unit area
- Unknown emission factors
- Emission ratios (ER)

### **Operational input:** major uncertainties (continued)

### Smoke production top-down:

- Missing fires (cloud masking)
- Missing products (clouds, gaps, AND limited species that can be measured)
- Variable injection altitude
- Meteorology: dispersion and mixing effects
- Variable/unknown evolution of measured and unmeasured species
- Misassigned product sources (e.g. haze due to multiple sources)

## Quantify biomass burning emissions during nighttime



### **Emissions:** air plus ground evaluation of usual constraints DC-8 flight tracks and 2013-08-27 TERRA/AOD



Represent the highly variable spatially and temporally components of emissions and understand fresh plume dynamics













### Residual smoldering combustion (RSC) AKA "post-frontal combustion"

- Definition: ~ "combustion with products not initially "significantly lofted" by flame-induced convection
- 90% of total emissions from a crown fire in Alaska
- Extreme PM per unit fuel consumption (volatile), major AQ issue!

# Characterize chemistry of emissions and understand chemical evolution and SOA in downwind plume

## **Emissions:** Undersampled chemistry: e.g. non-methane organic gases especially SVOC precursors

| Percent of unidentified NMOG mass in lab smoke |           |            |       |         |  |  |  |
|------------------------------------------------|-----------|------------|-------|---------|--|--|--|
| Year                                           | Chaparral | Coniferous | Peat  | Avg-all |  |  |  |
| 2009<br>w/NOAA                                 | 31        | 47         | 72    | 45      |  |  |  |
| 2012<br>FLAME-4                                | 7-15      | 7-17       | 20-37 | 8-19    |  |  |  |
| 2016<br>FIREX                                  |           |            |       |         |  |  |  |

**Evolution:** mass transfer between initial volatility pools, g/kg avg: range

Muller (2016) fast airborne PTR-MS tracks C-pools



### SEAC<sup>4</sup>RS PAN formation: space, time, subgrid?



PAN: Xiaoxi Liu, Greg Huey, Dave Tanner GA Tech. NOy: Tom Ryerson NOAA.

### **Evolution: look-up tables for GEOS-Chem**





Courtesy: Matthew Alvarado, Atmospheric Environmental Research

### **Evolution: net secondary organic aerosol (SOA)**



Time since emission (distance/windspeed (h))

### **Evolution:** no net SOA, but scattering increase



### **Evolution:** SOA controls?

- Jolleys et al (2012) review of field campaigns concludes no net source of SOA in biomass burning plumes
- Controlling factors (precursors, RH, etc?) largely unknown
- What's normal?
- Aerosol evolves even when no enhancements occur (e.g. May et al differential evaporation).
- Small enhancements are significant!



Vakkari et al (2014) PM1 increase partly inorganic, often overlooked!



### **Evolution:** Cloud processing of smoke

- Smoke and fairweather cumulus are like "milk and cereal"
- DOE LASIC (breakout session Wednesday 10:30)
- NASA ORACLES



### **Conclusions:**

**Emissions:** First detailed emission factors for previously littlestudied US wildfires and agricultural burning (BBOP/SEAC4RS). Top-down/bottom-up discrepancy

**Evolution:** New smoke evolution case studies at 1-40 hour time scales for wildfires and ag-burning.

**Product/model validation:** Evaluating operational input and model performance with aircraft data

These advances, especially in combination, will improve present and future atmospheric modeling of air quality, visibility, climate, etc

### Operational input: improvements on horizon

- 1. <u>More aircraft evaluation of inventories scaled with "usual" constraints</u>
- 2. Better smoke chemistry, fresh and evolution
- 3. New products and sensor from space

MODIS smoke over cloud AOD, GOES, VIIRS aerosol, MISR validation

### VIIRS 750 and 375 in orbit

Sees small fires better than MODIS, other

#### **GOES-2016:**

4X better spatial res, 5X better time res, 3X better spectral

### **TEMPO-2018** (Tropospheric Emissions: Monitoring of Pollution):

High res gases, e.g. CO

Good timing for FIREX, Fire-Chem, C-130!