

Tim and Art's charge

"identify gaps in our understanding of the role of biomass burning (BB) in climate change and to continue to foster collaborative research within the DOE ASR/ARM community (and beyond),...."

Lets narrow focus:

- Instruments for Next Gen Biomass Burn Expts suggestions based on BBOP Topics for off-line discussions
 Flight restrictions
 Instrument time response
 Particle probe coincidence limits
 Filter based light absorption measurements
 SP-AMS measurements of BC coating
 Dark Matter – Can an AMS see tar balls (Sedlacek et al)
- Next 3 slides: Science
- Important DOE research Instrument development - Most bang for the buck

Aerosol "neutralization"

There is enough NH_4^+ to neutralize NO_3^- , no more, no less

Flight 821b Black dots on 1 to 1 line for $NO_3 = NH_4$ equivalents, laser on and laser off

Rapid Photochemistry

Initial NO₂ ~ 120 ppb. That is most O_x that can come from fire. But O_x increases by 225 ppb

Rapid Increase in Scattering and MSE (Mass Scattering Efficiency) Flight 731a

Ratios: Downwind/Over fire: Scattering/CO = 1.68, Scattering/Org = 2.08, Org/CO = 0.81

Scattering increases by 68% due to a greater than 2-fold increase in MCE and a 19% decrease in Aerosol

Plot on right is long story. An attempt to retrieve size distribution from scattering and FIMS peak dN/dLogD (see poster)

We can reproduce observed MSE over fire, using an AMS CE = 1 But we cannot get an MSE above ~ 4.5 using downwind data. We need a 5.5. Dark matter (tar balls) increase actual Aerosol Mass and decreases MSE.