TRACKING UPDRAFTS USING POLARIMETRIC RADAR

Marcus van Lier-Walqui^{1,2}, Ann Fridlind², Scott Giangrande³, Scott Collis⁴, Toshihisa Matsui^{5,6}, Xiaowen Li^{6,7}, Bastiaan van Diedenhoven^{1,2}, Daniel Rosenfeld⁸, Alexander Ryzhkov⁹, Jeffrey Snyder⁹, Johannes Quaas¹⁰, Sue van den Heever¹¹, Robert Wood¹², Jiwen Fan¹³, and Pavlos Kollias^{3,14}

¹Columbia University, New York, NY, USA
 ²NASA Goddard Institute for Space Studies, New York, NY, USA
 ³DOE Brookhaven National Laboratory, Upton, NY, USA
 ⁴DOE Argonne National Laboratory, Argonne, IL, USA
 ⁵ESSIC/University of Maryland, College Park, MD, USA
 ⁶NASA Goddard Space Flight Center, Greenbelt, MD, USA
 ⁷GESTAR/Morgan State University, Baltimore, MD, USA
 ⁸Hebrew University, Jerusalem, Israel
 ⁹NOAA National Severe Storms Laboratory, Norman, OK, USA
 ¹⁰University of Leipzig, Leipzig, Germany
 ¹¹Colorado State University, Fort Collins, CO, USA
 ¹²University of Washington, Seattle, WA, USA
 ¹³DOE Pacific Northwest National Laboratory, Richland, WA, USA

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

THE BIG PICTURE

- There are large gaps in our understanding of atmospheric processes
 - Cloud microphysics is a prime offender (esp. deep convective microphysics)
- Our models have limited fidelity
- We have lots of observations, but do we use them well?
 - Are we isolating the processes we are interested in constraining?

POLARIMETRIC RADARS

- Polarimetric radars transmit/receive
 in multiple polarizations
- Polarimetric radar variables:
 - Z_{DR} : differential reflectivity
 - K_{DP} : specific differential phase shift
 - ρ_{HV} : co-polar correlation coefficient
- Plus, plain ol' vanilla radar reflectivity

KDPVSZDR

KDP AND ZDR COLUMNS

- Positive ZDR and KDP often indicate the presence of liquid water (rain, water-coated hail/ graupel)
- Observed above the environmental 0°C level, this can indicate the presence of a convective updraft
- See, e.g. Bringi (1991), Conway & Zrnic (1993), Kumjian et al (2014).

KDP AND LIGHTNING

- An example of how KDP and lightning activity correlate in space/time
- Lighning & KDP columns, Oklahoma May 20 2011

CONVECTIVE UPDRAFTS: KDP COLUMNS

- Typically, ZDR columns show up first (recirculated drops in nascent updraft)
- KDP columns show up next indicating substantial rain or liquid-coated hail mass
- Lightning peaks then shortly thereafter (mixed-phase microphysics of mature updraft)

KDP COLUMNS

- KDP columns correlate with updraft mass flux
- KDP and ZDR correlate with lightning

van Lier-Walqui et al. 2016

PROBLEMS WITH PREVIOUS KDP COLUMN ANALYSIS

- Bulk analysis over a wide field
 - Multiple updrafts at various points in lifecycle
 - Difficult to separate, say, aerosol effects from other meteorological effects on deep convection
 - an alternative: track a updraft cell in time

EFFECTS OF AEROSOLS ON CONVECTION: HOUSTON

- Houston TX NEXRAD radar (KHGX)
- Houston TX Lightning Mapping Array
- Satellite analysis of CCN (courtesy D. Rosenfeld)
- <u>June 08 2013</u>

TRACKING

- Multiply KDP by height above melting level, integrate in slab
- Track in time using freely available software (TrackPy)
- Analyze radar, lightning and DSD retrievals

- Three examples:
 - <u>Column no. 9</u>
 - <u>Column no. 35</u>
 - <u>Column no. 37</u>

SUGGESTIVE CONTRASTS

Column 6

Column 37

SUGGESTIVE CONTRASTS II

OBSERVED VS. MODELED NEXRAD NU-WRF

CONCLUSIONS

- Polarimetric radar observations provide crucial insights into deep convective microphysics
- Tracking KDP columns allows for comparison of evolution of individual updraft cells
- Some suggestion of possible aerosol effects on deep convective microphysics
- We need higher temporal and spatial resolution to improve tracking and effectively analyze observed microphysics