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Unified convection scheme (UNICON, Park 2014)

Cold pools fraction
. is driven by convective downdraft

penetrating into boundary layer
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Unified convection scheme (UNICON, Park 2014)

The degree of convective organization (Q)
: a linear function of cold pool fraction

Cold pools fraction
. is driven by convective downdraft

penetrating into boundary layer
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Unified convection scheme (UNICON, Park 2014)

Plume and environmental properties
: affected by Q

The degree of convective organization (Q)
: a linear function of cold pool fraction
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Cold pools fraction
. inversely proportional to plume radius
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Unified convection scheme (UNICON, Park 2014)

The degree of convective organization (Q)

: a linear function of cold pool fraction

Cold pools fraction
. is driven by convective downdraft

penetrating into boundary layer
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Project objectives

ARM observations
Convective
/’ organization \
Updrafts
Cold pools UNICON /precipitation
(Park 2014)
A /
Downdrafts
/evaporation
WRF simulations

* Diagnose convective organization and cold pool processes over the SGP (MC3E) and
central Indian Ocean (AMIE) using the ARM field campaign observations combined
with related field campaign datasets (DYNAMO) and high-resolution CRM

simulations driven by ARM observations.
* Evaluate processes related to convective organization and cold pools that are

explicitly parameterized in a unified convection scheme (UNICON).



Data and period

SPolKa (AMIE/DYNAMO)

o dual-polarization S- and Ka-band radar

o Addu Atoll in Maldives

o reflectivity interpolated at 1-km resolution
o eastern half of the radar domain

a) Model Rain Rate

WRF simulation (Feng et al. 2015)

o limited-domain cloud-resolving (500-m)
simulation over the central Indian Ocean ¢

o surface rain rate, reflectivity, and )
temperature
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ARM AMIE-Gan large-scale forcing data*
o constrained variational objective analysis
o ECMWEF analysis/SMART-R adjusted precip
o omega, specific humidity

o SCMran in a “semi off-line” mode
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November 4-12: common availability, locally growing convection
with negligible stratiform precipitation



Cold pools identification

SPolKa WRF simulation
o manual tracking o potential temperature’ < 0.5 K
(Rowe and Houze 2015) (virtual Tin UNICON)

o fractional area (Nov 4-5) ¢ fractional area (Nov 4-12)
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Feng et al. (2015)



Convective elements: feature-based analysis

Contiguous convective echo (CCE)

o Convective-stratiform classification algorithm
(Powell et al. 2016; Steiner et al. 1995)

o Applied to SPolKa and WRF reflectivity

o Group connected grids of convective echoes

o Minimum size: 2 km? (SPolKa), 0.5 km? (WRF)

Contiguous convective updraft (CCU)

o ldentify grid points with strong enough updraft
(>5 m/s, at least 1 km deep) above boundary
layer (1 km)

o Group connected grids of ‘convective updrafts’

Applied to WRF 3-D vertical velocity fields

o Minimum size: 0.5 km?
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Convective elements: feature-based analysis
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Cold pools fraction lags
precipitation by a few hours

UNICON shows the lagging
while the cold pools tend to
persist longer than those in
observations and in WRF
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* QOur project aims at evaluating the representation of the two-way feedbacks between
convective updrafts and cold pools in UNICON

* Time evolution of precipitation, CCE/CCU size distribution, and cold pools fraction
during AMIE/DYNAMO is examined using radar observations, a high-resolution WRF
simulation, and a single-column model (UNICON) simulation forced with the ARM

AMIE-Gan large-scale forcing
*UNICON was not tuned for our study
* Precipitation vs. cold pools fraction
o In SPolKa and WREF, cold pools fraction lags precipitation by a few hours

o UNICON represents the lagging, while the cold pools tend to persist longer than
that in observations and in the WRF simulation (possibly due to the lack of
horizontal advection)

* Cold pools fraction vs. CCE/CCU/plume size

o In WRF, CCEs and CCUs show similar time evolution in their size distributions and
the number of large CCEs/CCUs (indicative of degrees of convective
organization) increases with cold pools fraction

o The WRF results support UNICON’s formulation of the degrees of convective
organization (Q), which is linearly proportional to cold pools fraction



« AMIE/DYNAMO
o extend the analysis to the entire AMIE/DYNAMO period
o high-resolution WRF simulations forced with the ARM AMIE forcing dataset
o examine sensitivity of UNICON results to, for example, efficiency of rain re-
evaporation in downdraft, and evaporation
o evaluate cold pool properties in UNICON (e.g., temperature and specific
humidity perturbation)
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* MC3E (Jensen et al. 2016)
o investigate the convection-cold pools interaction in a continental environment



UNICON global simulation results
Diurnal Cyclone of Precipitation
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Park 2017. Journal of Climate. In Preparation

The Impact of a revised fractional mixing rate on the climate simulated by the UNICON




Type A cold pools parameterizations where scalar variables are used to
represent the two-way interaction between convection and cold pools without
explicit representation of cold pool properties

m Source of cold Changes to plume properties as thevalue of the
noolenerg used variable increases
Piriou et al. . .
(2007) Evaporation of ¢(2) Entrainment rate decreases

convective .
Mapes and Neale recinitation or Plume base temperature perturbation, base mass
(2011) precip 8 flux and radius increases

Type B cold pool parameterizations where cold pool properties are explicitly
represented

Source of cold .
Impacts of cold pool on convection
noolenerg
. Provides vertical velocity at the top of cold pool front to
Qian et al. (1998) y i P P
convection scheme

Convection occurs in ‘unperturbed’ sub-domain of a grid cell and

Grandpeixand Evaporatively- 1d ool de additional lift to boundarv | .
Lafore (2010) driven convective  €0ld pools provide additional lifting energy to boundary layer air
downdraft parcel
penetrating down  Cold pools affect plume radius, temperature, specific humidity,
Park (2014) : : : .
UNICON into boundary and vertical velocity perturbation through a scalar that
layer represents the degree of mesoscale convective organization

Del Genio et al. Scheme’s less-entraining plume is triggered only when cold pools
(2015) exist



