

CMDV-CM4 Overview

2017 ARM/ASR PI Meeting

March 14, 2017

Coupling Mechanistically

the

Convective Motions

and

Cloud Macrophysics

in a

Climate Model

What we are trying to do

CM4 will use new ARM observations of shallow clouds and the lower-tropospheric state to evaluate the current CLUBB representation of shallow clouds in ACME, develop new shallow-cloud schemes, and tune and validate those shallow-cloud schemes in single-column-model (SCM) simulations.

CMDV-CM⁴ Collaborators

David Dames

Rusen Oktem

•	David Romps	Lead PI	LBNL
•	Andrew Vogelmann	Co-PI	BNL
•	Christopher Bretherton	Co-PI	U Washington
•	Charles Jackson	Co-PI	UT Austin
•	Michael Jensen	Co-l	BNL
•	Pavlos Kollias	Co-l	BNL

Load DI

I D I I I

LBNL

Co-l

Approach 1: Couple mass flux to cloud cover

Approach 1: Couple mass flux to cloud cover

Approach 1: Couple mass flux to cloud cover

Approach 2: Replace CLUBB with machine learning

Like CLUBB, prognose the subgrid correlations between temperature, water, and vertical velocity.

Unlike CLUBB, use machine learning to find the appropriate higher-order closure (HOC) rather than assuming a form of the PDF.

It is expected that this will retain the primary benefits of CLUBB, but with higher accuracy.

Observational Analysis Plans

- Mass Flux
 - Algorithm available for estimates from KAZR-derived updraft velocity

Damao Zhang

- In-cloud eddy dissipation
 - Algorithm available, Retrieval based on radar Doppler spectrum width
- Cu-layer RH
 - Object-oriented data processing
 - Readying RL and AERI datasets has resolved QC questions
- Sub-cloud turbulence
 - Object-oriented data processing
 - Vertical velocity variance and skewness from Doppler lidar.
 Recently resolved data issues
- Liquid Water Content
 - Use combined MWR-KAZR technique. Needs AERIoe for EFs
- Cu sizes (SACR)
 - Requires availability of SACR observations (beginning June 2017)

Observation – 3D Modeling via Stereo Photogrammetry

A software algorithm is developed to achieve the following steps from a single stereo view

- Separate the clouds from the background
- Reconstruct 3D positions of the cloud points
- Generate a surface representation for identified cloud masses at 20 m resolution

Shallow Cu at SGP CF, red dots represent locations of reconstructed cloud points

CMDV-CM⁴ Collaborators

David Dames

Rusen Oktem

	David Romps	Lead PI	LBINL
•	Andrew Vogelmann	Co-PI	BNL
•	Christopher Bretherton	Co-PI	U Washington
•	Charles Jackson	Co-PI	UT Austin
•	Michael Jensen	Co-I	BNL
•	Pavlos Kollias	Co-I	BNL

Co-L

Laad DI

I D I I I

LBNL