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Motivation

Reflected shortwave radiation bias in the
southern Ocean common to many climate
models
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Large component attributed to a lack of low
level supercooled liquid water clouds on the
cold-air side of cyclones
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F1G. 6. TOA SW reflected flux error from the CMIP5 AMIP
experiments with respect to CERES-EBAF, showing zonal-mean
averages for austral summer (DJF). The solid line shows the
ensemble-mean bias, and the gray-shaded envelope shows the
10th-90th percentile range.

Same results from NWP case studies in
similar synoptic conditions (cold-air
outbreaks) in the northern hemisphere

Limited in-situ observations to test
models.

Field et al. 2014




}- 1 km resolution simulations |

Grey-zone model
Intercomparison

Met Office  Ficld et al., submitted
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« CONSTRAIN case-study
* 9 regional models

 1km to 16 km horizontal
grid resolution

 Analysis of Sc and Cu
regions of the cloud field

The stratocumulus region is not
simulated well by the models, which f
tend to predict open cell convection # .,




Model intercomparison:
outgoing TOA fluxes
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Satellite observations
All models underestimate outgoing SW flux (lack of cloud and low LWP) in
the Sc region

Models better represent the clouds in the Cu region and converge with
observed TOA fluxes at higher grid resolutions




IN-SItu observations Abel et al, submited
Met Office
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Geostrophic wind scale
in kt for 4.0 hPa intervals

Aircraft observations in the Sc region and across the transition
In cloud regime to the Cu region

« Boundary layer structure, aerosol and cloud microphysics.
« What drives the transition in cloud morphology?




Boundary layer structure

Boundary
layer
becomes
decoupled
across the
transition in
cloud cover
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Agt and A0il are the difference in gt and 6il between upper 25% and lower 25% part of the boundary layer
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» Supercooled liquid water

* Small concentrations of ice
that precipitate below the cloud

Cloud microphysics
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* Increase in precipitation
sized particles (ice) across
the transition

« Glaciation of cloud across the
transition in cloud cover

» Convection spans the Hallett-
Mossop temperature zone and
Is conducive to secondary ice
production.
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Enhancement in precipitation in the
Cu regime leads to a rapid removal of
aerosols via collision-coalescence

Ultra-clean layer at the top of the
boundary layer in the Cu regime.

Very similar to observations in
Pockets of Open Cells (POCs) in
subtropical Sc decks.
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~ Aircraft observations
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Ice processes in the model
are too efficient at removing
liquid water from the
stratiform cloud layer.

Trajectories through the
model show that
precipitation induced
decoupling of the boundary
layer plays a key role in the
break-up of the stratiform
cloud.




Metotice  Key points

Simulating boundary layer clouds in cold-air outbreaks presents a
significant challenge for weather and climate models.

Complex interaction between the dynamics, cloud microphysics and
convection in these shallow boundary layers.

Myriad of poorly quantified processes in the mixed phase clouds that
need to be parameterized in the models.

Linkages to the southern Ocean problem in climate models (lack of
supercooled LWC on the cold-air side of cyclones).




