

CLOUD RESPONSE TO INCREASED ABSORPTION BY BROWN CARBON IN BIOMASS BURNING

YAN FENG AND RAO KOTAMARTHI

Environmental Science Division Argonne National Laboratory

XIAOHONG LIU University of Wyoming

Rapid adjustments of clouds and land surface to aerosols (absorbing) → "Semi-direct effect"

Global model estimates of semi-direct effect

"Very low confidence" in sign and magnitude (IPCC-AR5, 2013)

Models underestimate aerosol absorption by a factor of 2 to 3 compared with AERONET

(Bond et al., 2013)

Light absorption of brown carbon (BrC), a class of absorbing organics, is underrepresented in most models

Optical Classification

Molecular Structure

Transmission Electron Microscope

Absorption

Black carbon

Brown carbon

Organic carbon

Graphene Layers (graphitic or turbostratic)

Polycyclic Aromatics, Humic-Like Substances, Biopolymers, etc.

Low-MW Hydrocarbons and Derivatives (carboxylic acids, etc.)

(Pöschl, 2003; Kis et al., 2006; Andreae and Gelenscér, 2006)

Filters

Primary emissions Secondary

biomass burning, biofuel combustion, and biogenic oxidation (e.g., O₃, nitrate radicals), polymerization, aqueous reactions with amines, ...

Enhanced aerosol absorption by OC→ BrC

Lab/Field data of biomass burning aerosols

emissions

- Absorption properties of BrC are highly variable by origins
- A parameterization is developed by linking BrC absorption to BC/OC ratio at emission (Lu et al., 2015)
- BrC enhances aerosol light absorption in the short wave (< ~800nm)

Modal Aerosol Module (MAM4) in CAM5.3

BrC: OC + more absorptive refractive indices

BrCabs = BrC - OC: enhanced absorption by converting OC to BrC

Improved representation of aerosol absorption spectral dependence (AAE) by OC → BrC

Direct radiative effect (DRE) due to BrCabs

 It changes the OC DRE from a cooling effect to slightly warming

Biomass burning aerosols overlaid with subtropical marine stratus or stratocumulus

Southeast Atlantic (Sept. 2011)

Filled contours: AAOD

White contours: liquid stratus

cloud fraction

Longitude (east-degrees)

BrCabs-induced changes in heating rates, temperature and cloud fraction

10-year simulations: All aerosols (OC->BrC) – All aerosols (OC)

BrCabs results in a heating profile different from BC – larger effect when background aerosols less absorbing

Evaporates cloud top;

Inversion strengthened

Clouds thinning;

Cloudiness increases by 3%;

BC- induced changes in thermodynamic structure and cloud fraction

All aerosols (OC) – All aerosols (OC, no BC)

BrCabs- (Top) vs BC- (Bottom) induced changes

In this cumulus-like cloud region, aerosols are in the cloud, as well as above the cloud;

Similarly, BrCabs has a larger heating when background aerosols less absorbing;

Compare to increased cloudiness by BC, BrCabs leads to slightly decreased cloud fraction

10-year mean responses of low clouds in Sept.

Cloud Fraction Changes due to BrCabs

Cloud fraction responses to absorbing BC and BrCabs are regarded as "detectable" (>standard deviation) regionally, compared to the All aerosols (OC) case

Changes due to BC

Global and annual mean responses

BC+BrCabs				
	mean	std	Max-min	median
Δ Cloud cover(%)	0.034	0.111	0.377	0.044
ВС				
Δ Cloud cover (%)	-0.024	0.137	0.475	0.006
BrCabs				
∆ Cloud cover (%)	0.058	0.123	0.404	0.056

Conclusions

- BrCabs (OC->BrC) inserts a direct positive radiative effect that is about 11% of the BC direct effect. It is more significant regionally – and by including SOA contribution?
- The BrCabs-induced heating rate changes are different from the BC heating profiles, more significant when background is less absorbing, as a result of internal mixtures of aerosols;
- This leads to different cloud responses to BrCabs vs BC in the sign and magnitude, depending on the cloud regime and aerosol heating profiles;
- It also indicates the scaling method of BC AAOD to account for additional absorption from BrC may not be applicable;
- The simulated low-cloud responses to biomass burning BC and BrCabs are more "detectable" on the regional and monthly scale
 - larger impact on the cloud seasonal cycle than annual mean?

