

Vertically resolved physico-chemical properties of atmospheric nanoparticles at the ARM Southern Great Plains Site

Jim Smith, Haihan Chen Department of Chemistry, University of California @ Irvine

John Ortega & Jim Greenberg Atmospheric Chemistry Modeling and Observations Lab, National Center for Atmospheric Research Acknowledgements: DOE ASR program SGP Support Staff ARM

Jeff Pierce

Department of Atmospheric Science, Colorado State University

Pete McMurry

Department of Mechanical Engineering, University of Minnesota @ Minneapolis Pi Day, 2017 ARM/ASR PI Meeting

Motivation: How do ultrafine aerosol particles form in the atmosphere? What are their potential impacts?

Adapted from Riipinen, et al., ACP 2011

2013 New Particle Formation Study (NPFS)

Vertically-resolved 10-20 nm diameter particle concentrations with meteorology

- Tethered Balloon with computer-controlled winch
- 2 x portable condensation particle counters (TSI model 3007) configured with 10 nm and 20 nm cut-off diameters.
- Portable weather station (Kestrel model 4500nv)

Ground-based measurements @ Southern Great Plains Central Facility:

- Hygroscopicity (Tandem Differential Mobility Analyzer)
- Continuous vertical profiles of temperature and relative humidity (Raman Lidar)
- Continuous vertical profiles of vertical wind velocity (Doppler Lidar)
- Size distribution (1.5 400 nm diam., Scanning Mobility Particle Sizer)

2013 New Particle Formation Study (NPFS)

Vertical distribution of nanoparticles during new particle formation May 12, 2013

Well-mixed boundary layer confirmed by remote sensing data May 12, 2013

Stability calculation is based on the Richardson Number:

$$Ri = \frac{g(\Delta T/\Delta z)}{T(\Delta u/\Delta z)^2}$$

- vertical wind velocity (*u*) from the **Doppler Lidar**
- temperature (T) from the Raman Lidar
- *z* is height and *g* is the gravitational constant

Chen et al., in preparation

Ground-based aerosol hygroscopicity measurements show that 13 nm diameter particles are uniquely hygroscopic

Chen et al., in preparation

What is the water content of 13 nm diameter particles in the boundary layer on May 12th?

The water content of nanoparticles in the boundary layer may at times be quite high: May 9, 2013

- Ground-based observations may not always accurately represent new particle formation.
- Once nanoparticles are formed, they can be rapidly mixed throughout the boundary layer.
- Atmospheric nanoparticles are *wet* (up to 95 vol% water). Implications:
 - Increases size, volume and surface area of particles for gas species condensation (esp. water-soluble gases) and heterogeneous reactions within particles
 - 2. Affects phase of particles particles have lower viscosity and are more "liquid like."
 - 3. Mixing state could be affected.
 - 4. Vapor pressure of semi-volatile organics over particles can be affected by water content of particles.