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CCN/CN (fraction activated)

Trends in NH; Emissions & Potential Impacts
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Ammonia emissions are estimated to
Increase as use of synthetic fertilizers
becomes more popular and per capita
meat and dairy consumption increase
among developing countries.

Amann et al., A. Rev. Env. Res. 2013

Multi-phase reactions of NHy/NH,*
have been shown to enhance the
hygroscopicity of laboratory generated
aerosols composed of slightly soluble
organic acids via the formation of
organic acid-derived ammonium salts.

Dinar et al., ES&T 2008



Trends in NH; Emissions & Potential Impacts
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Multi-phase reactions of
NH;/NH,* have been shown to
Increase the mass absorption
coefficient (MAC) for
secondary organic aerosol via
the formation of conjugated
nitrogen containing species.

Adapted from Updyke et al., Atmos. Env. 2012



June in Look Rock, TN
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Presentation Notes
1) Add in monoterpene concentration range.


Particle Chemical Composition
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Campaign Averages:

PM,=7.6 £4.7 ug m3

forganic =0.64
fsulfate =0.24
fammonium =0.08

fnitrate =0.04
O:.C=0.77+0.12

pH =1.78 + 0.53

Adapted from

Budisulistiorini et al., ACP 2015
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Average O:C = 0.77
Campaign average pH = 1.78 0.53
LWC – 38.7 mol L-1


Ammonia Perturbation Experiment

Ambient Air Autonomous duty cycle permits
sampling of ambient and NH,
Reactor exposed particles, with measured
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Ambient Particle Hygroscopicity
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2) Size-dependent « values indicate size-dependent
concentrations of aerosols at Look Rock (more on poster).
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1) Need references for the AMAZE-08 and isoprene chamber studies


Ambient Light Extinction and Absorption
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Measured Impact on Hygroscopicity
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Particles exposed to NH; are less hygroscopic than ambient
particulates. The net impact on hygroscopicity is small (< 20%).
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This is not trivial to interpret these measurements:

Net uptake of NH3 depends on composition, pH, phase, as has been demonstrated in the lab, to assess impact on particle hygroscopicity and optical properties, we need to know a bit about the amount of NH3/NH4+ that has been reequilibrated to the aerosol (model that) and one would expect it to scale with particle acidity, LWC.



Measured Impact on Hygroscopicity

4 (RH)reacted /'Y (RH)ambient

=z

1.2

1.0

0.8

0.6

0.4

200
150
100

50

0.5

0.6 0.7 0.8 0.9

N, ! (2Nsoz + Nvoy)

1.0

NH, uptake
Increases
hygroscopicity

NH; uptake
decreases
hygroscopicity

Net NH; reactive uptake
IS observed at low ratios
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leading to a decrease In
particle hygroscopicity.
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If we look at the effect on hygroscopicity, here gamma RH (Quinn et al definition), we see a strong dependence on NH4 / (SO4+NO3) ratio. As one might expect. AS NH3 uptake will be enhanced on more acidic particles, also these have less organic, perhaps more water.

BUT, is this an effect of changing the hygroscopicity of the inorganic or organic component? The change in the hygroscopicity of the inorganic component is small, in the correct direction (k(NH4HSO4) < k(NH4)2SO4)), but not by the extent needed here. You would need about a factor of 2!! kappaABS = 0.56 and kappaAS = 0.50 (or there abouts). H2SO4 is, of course, much more hygroscopic than either (kappa ~ 0.95).

So, the organics must be doing some of this? Are there signatures of a non-hygroscopic nitrogen containing organic? If so, it may absorb?


Measured Impact on Light Absorption
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Net NH; reactive uptake is observed at low ratios of NH,* /
(SO,% + NOy) leading to a increase in absorption at 405nm and
has no effect on absorption at 532nm.
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Increase in light absorption at 405nm is observed, and it is significant! This is a factor of 2 (1-2 inverse megameters). This is comparable with the BC component.

No effect is seen at 532nm (see poster if you don’t believe me), providing confidence in the method.

The variability at low ion ratio is not noise, and is expected as the composition and abundance of organic should serve to drive this process.

This was only 2 hours, 100 ppb equivalent.




Conclusions and Acknowledgements
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Conclusions:

Net NH; uptake iIs observed at
low ratios NH,* / (SO,% + NO;y)
leading to a measureable:

Decrease in hygroscopicity

Increase In absorption at 405 nm
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Chemically interesting.

Note the frequency distribution in ion ratio, this is not a frequent event.

Some of this has already occurred as there is condensed phase organic, perhaps some of this has driven the NH4 levels down already! We are just probing the reaction at one stage (NH4 loading)

The absorption is only at 405, not over the entire radiation spectrum.
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Fraction Activated (CCN/CN)
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Organic mass fraction
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