Field measurements of the impact of the reactive uptake of reduced nitrogen on the hygroscopicity and light absorption of ambient secondary organic aerosol

Katy Zimmermann, Xiaolu Zhang

Lynn Russell, Jason Surratt, Karena McKinney, Chris Cappa, Tim Bertram

Trends in NH₃ Emissions & Potential Impacts

Ammonia emissions are estimated to increase as use of synthetic fertilizers becomes more popular and per capita meat and dairy consumption increase among developing countries.

Amann et al., A. Rev. Env. Res. 2013

Multi-phase reactions of NH_3/NH_4^+ have been shown to <u>enhance</u> the hygroscopicity of laboratory generated aerosols composed of slightly soluble organic acids *via* the formation of organic acid-derived ammonium salts.

Dinar et al., ES&T 2008

Trends in NH₃ Emissions & Potential Impacts

Multi-phase reactions of NH_3/NH_4^+ have been shown to <u>increase</u> the mass absorption coefficient (MAC) for secondary organic aerosol *via* the formation of conjugated nitrogen containing species.

Adapted from Updyke et al., Atmos. Env. 2012

June in Look Rock, TN

Particle Chemical Composition

Ammonia Perturbation Experiment

Ambient Particle Hygroscopicity

- Ambient determinations of supersaturated hygroscopicity are in agreement with ambient measurements in regions dominated by isoprene chemistry and chamber determinations.
- 2) Size-dependent κ values indicate size-dependent organic mass concentrations of aerosols at Look Rock (*more on poster*).

Zimmermann / Bertram UW Madison

Ambient Light Extinction and Absorption

Zhang / Cappa UC Davis

Measured Impact on Hygroscopicity

Particles exposed to NH_3 are <u>less hygroscopic</u> than ambient particulates. The net impact on hygroscopicity is small (< 20%).

Measured Impact on Hygroscopicity

Measured Impact on Light Absorption

Net NH₃ reactive uptake is observed at low ratios of NH₄⁺ / $(SO_4^{2-} + NO_3^{-})$ leading to a <u>increase in absorption</u> at 405nm and has no effect on absorption at 532nm.

Conclusions and Acknowledgements

Conclusions:

Net NH_3 uptake is observed at low ratios NH_4^+ / $(SO_4^{2-} + NO_3^{-})$ leading to a measureable:

Decrease in hygroscopicity

Increase in absorption at 405 nm

Acknowledgements:

Katy Zimmermann, Xiaolu Zhang, Lynn Russell, Jason Surratt, Karena McKinney, Chris Cappa.

Office of Science

Grant no. DE-SC0006431

 γ (RH) $_{\text{reacted}}$ / γ (RH) $_{\text{ambient}}$

 $n_{NH_{4^{+}}} / (2n_{SO_{4^{2-}}} + n_{NO_{3^{+}}})$

ACSM organic mass fraction

 κ_{measured}