An Efficient Representation of Aerosol Mixing State for Atmospheric Models

Joseph Ching1, Rahul Zaveri1, Richard Easter1, Alla Zelenyuk1, Jerome Fast1
Nicole Riemer2, R. Subramanian3, Art Sedlacek4

1Pacific Northwest National Laboratory, Richland, WA, USA
2University of Illinois at Urbana-Champaign, Urbana, IL, USA
3Carnegie Mellon University, Pittsburgh, PA, USA
4Brookhaven National Laboratory, Upton, NY, USA

DOE ARM/ASR PI meeting
What is aerosol mixing state?

Aerosol mixing state: distribution of per-particle chemical species composition. [Riemer and West 2013]

externally mixed population
What is aerosol mixing state?

Aerosol mixing state: distribution of per-particle chemical species composition. [Riemer and West 2013]
Both CCN and optical properties depend on size and mixing state.
Objective

To reliably predict *CCN and optical properties* as a function of size and mixing state at a *reasonable computational cost*

- Develop a novel sectional framework to resolve aerosol mixing state: MOSAIC-mix.
- Apply the model using single particle measurements (SPLAT-II and SP2) during CARES to simulate aerosol mixing state evolution.
In each size bin, all particles have same BC mass fraction w_{BC} and same hygroscopicity (κ).

Zaveri et al. (2008) MOdel for Simulating Aerosol Interactions and Chemistry
MOSAIC-mix sectional framework

MOSAIC:
Sectional approach resolving size only

In each size bin, all particles have same BC mass fraction w_{BC} and same hygroscopicity (κ)

Zaveri et al. (2008)

MOSAIC-Mix:
Resolves size, BC mass fraction and hygroscopicity

Ching et al. (2016)
Approach

► Use 10 idealized urban scenarios to simulate aerosol mixing state evolution under different emissions and environmental conditions.

► Optimize the sectional framework using a high-resolution version of MOSAIC-mix and particle-resolved model PartMC-MOSAIC [Riemer et al. 2009].

10 Urban Plume Scenarios
- Gaseous emissions
- Black carbon emission
- Background particle concentration
- Solar radiation
- Temperature
- Relative humidity
Approach

High-resolution MOSAIC-mix with $24 \, D_{\text{dry}} \times 35 \, w_{\text{BC}} \times 30 \, \kappa$
Benchmarking

- High resolution MOSAIC-mix was evaluated against particle-resolved model PartMC-MOSAIC.
Approach

- Devise low-resolution MOSAIC-mix
Approach

- Devise low-resolution MOSAIC-mix
Approach

- Devise low-resolution MOSAIC-mix
About 2,000 low-resolution configurations in 1D, 2D, or 3D ($24D_{dry} \times 1-3w_{BC} \times 1-3\kappa$) with different choices of bin boundaries evaluated against the high-resolution configuration.
Performance

CCN concentrations

- Individual scenarios
- Average of 10 scenarios

Internally mixed
(24 x 1 x 1)

(24 x 2 x 2)

D\text{dry}

WBC

Proudly Operated by Battelle Since 1965
Performance

CCN concentrations

Optical properties

Internally mixed

(24 x 1 x 1)

(24 x 2 x 2)

Performance

CCN concentrations

Optical properties

Internally mixed

(24 x 1 x 1)

(24 x 2 x 2)

D_{dry}

W_{BC}

D_{dry}
CARES campaign

June 2 – 28, 2010

CARES Objectives:

- Investigate Anthropogenic-Biogenic Interactions in SOA formation.
- Investigate black carbon (BC) mixing state evolution.
- Quantify the effects of aerosol ageing on aerosol optical and CCN activation properties.

Zaveri et al. ACP 2012
Lagrangian simulations by MOSAIC-mix and PartMC-MOSAIC

- Used **5 trajectories** originating from T0 on June 15 from a FLEXPART-WRF simulations Fast et al. (2012).
- **Same gas and aerosol emission, initial and background conditions** were input to both PartMC-MOSAIC and MOSAIC-mix.
- Model simulations were compared to G-1 observations.
Model initialization using single particle measurements at T0

To derive initial conditions for model simulations, we used:

- SMPS and APS - size distributions
- SPLAT–II - size and mixing state distributions of non-BC containing particles
- SP2 – size and mixing state distributions of BC-containing particles
Deriving BC size and mixing state distribution from SP2

Assumed: Spherical shape
Core-shell structure

Total diameter: \(D_{\text{total}} = D_{\text{core}} + D_{\text{coat}} \times 2 \)
Deriving BC size and mixing state distribution from SP2

Assumed: Spherical shape
Core-shell structure

Total diameter: \(D_{\text{total}} = D_{\text{core}} + D_{\text{coat}} \times 2 \)

Core diameter distribution

\[
dN / d\log_{10} D_{\text{core}} / \text{cm}^{-3}
\]

\[
D_{\text{core}} \quad (\text{Core diameter or Mass Equivalent Diameter})
\]

Pacific Northwest National Laboratory
Proudly Operated by Battelle Since 1965
Deriving BC size and mixing state distribution from SP2

Assumed: Spherical shape
Core-shell structure

Total diameter: $D_{\text{total}} = D_{\text{core}} + D_{\text{coat}} \times 2$

Core-coating thickness distribution

Core diameter distribution

$dN / d\log_{10}D_{\text{core}} / \text{cm}^{-3}$
We consider 7 particle classes from SPLAT, \textit{6 organic-sulfate and sea salt}.
Deriving size and mixing state distribution from SPLAT- II and SP2

Initial size distributions
Input to model

<table>
<thead>
<tr>
<th>dN / dlog10Dp / cm⁻³</th>
</tr>
</thead>
<tbody>
<tr>
<td>10⁴</td>
</tr>
<tr>
<td>10²</td>
</tr>
<tr>
<td>10⁰</td>
</tr>
<tr>
<td>10⁻²</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diameter / μm</th>
</tr>
</thead>
<tbody>
<tr>
<td>10⁻²</td>
</tr>
<tr>
<td>10⁻¹</td>
</tr>
<tr>
<td>10⁰</td>
</tr>
<tr>
<td>10¹</td>
</tr>
</tbody>
</table>

- SMPS+APS
- SP2
- Organic-sulfate 1
- Organic-sulfate 2
- Organic-sulfate 3
- Organic-sulfate 4
- Organic-sulfate 5
- Organic-sulfate 6
- Sea Salt
Deriving size and mixing state distribution from SPLAT-II and SP2

Initial size distributions
Input to model

10 Initial size distributions input to the model derived from SP2

$\frac{dN}{d\log_{10}D_p} / \text{cm}^{-3}$

$Diameter / \mu m$

10^{-2} 10^{-1} 10^0 10^1

10^{-2} 10^{-1} 10^0 10^1
Aerosol mass concentrations simulations vs G-1 observations

- **BC**
- **POA**
- **SO\textsubscript{4}**
- **NO\textsubscript{3}**
- **NH\textsubscript{4}**
- **Total organics**

Mass concentration / μg m-3

Time (UTC) / h

- **PartMC-MOSAIC simulations**
- **MOSAIC-mix simulations**
- **G-1 Observations**
Size-resolved vs mixing-state-resolved

Absorption coefficient

10 Idealized scenarios
(Ching et al., 2016)
5 CARES trajectories
× Average

NRMSD w.r.t. HR MOSAIC-mix / %

Internally mixed
(24 x 1 x 1)
(24 x 2 x 2)

Bin Configuration
Summary

► Developed a novel sectional framework that efficiently resolves mixing state: MOSAIC-mix.

► Showed that mixing-state-resolved simulations better predict the CCN and optical properties than size-resolved only simulations with a small number of mixing state bins.

► Applied the model using initial conditions from SPLAT-II and SP2 single particle measurements during CARES.

► MOSAIC-mix is being implemented in WRF-Chem to assess the impacts of aerosol mixing state at regional scale.

For more details, please refer to poster 71.