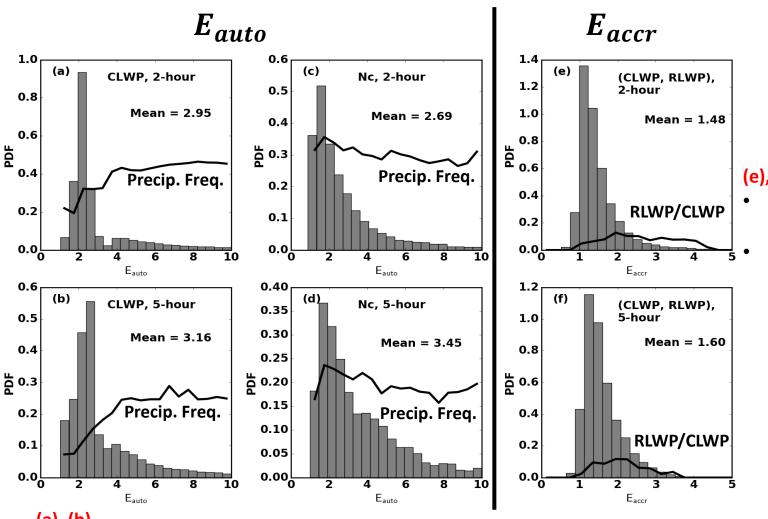
2018 Joint ARM User Facility and ASR PI Meeting

Reconstruct Autoconversion and Accretion Enhancement Factors in GCMs using Ground-based Observations at the Azores

Peng Wu, Baike Xi, Xiquan Dong

Department of Hydrology and Atmospheric Sciences, The University of Arizona, Tucson, AZ


Zhibo Zhang

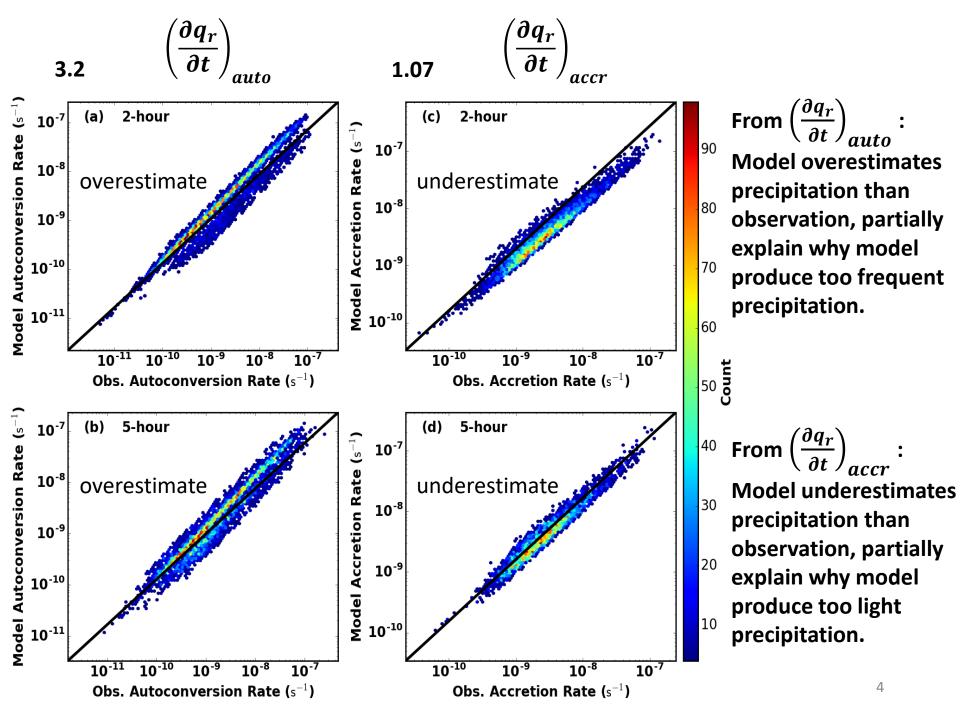
Physics Department, The University of Maryland, Baltimore County, MD

Motivation

- Most GCMs simulate precipitation too frequent and too light compared to observations,
- Autoconversion and accretion rates :
 - $\left(\frac{\partial q_r}{\partial t}\right)_{auto} = 1350q_c^{2.47}N_c^{-1.79}$ (precip. frequency) • $\left(\frac{\partial q_r}{\partial t}\right)_{accr} = 67(q_cq_r)^{1.15}$ (precip. intensity)
- Consider *subgrid* variability and covariability of microphysical quantities:
 - $\left(\frac{\partial q_r}{\partial t}\right)_{auto} = E_{auto} 1350 q_c^{2.47} N_c^{-1.79}$ • $\left(\frac{\partial q_r}{\partial t}\right)_{accr} = E_{accr} 67 (q_c q_r)^{1.15}$
 - E: enhancement factor, const. in GCMs.

Khairoutdinov and Kogan, 2000; Morrison and Gettleman, 2008; Lebsock et al. 2012 and others.

(e), (f)

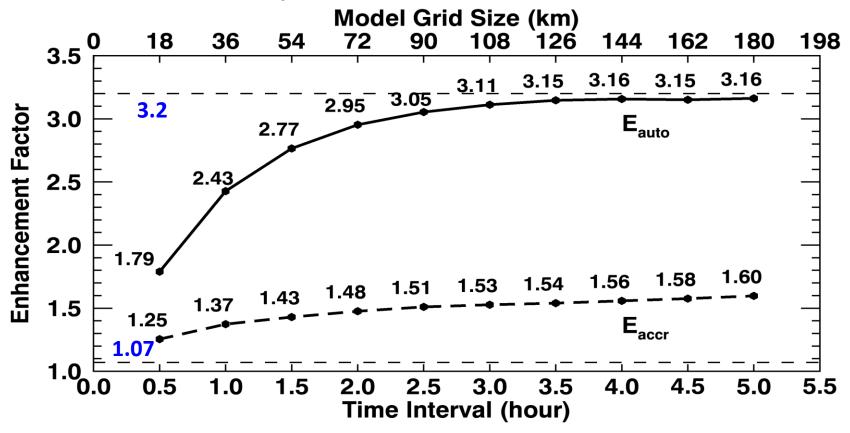

E_{accr} has mode~1.5
and right skewed,
RLWP/CLWP
increases with E_{accr}
and then
decreases,
suggesting a
possible existence
of an optimal state
in rain drop
collection process.

(a), (b)

- E_{auto} has a bimodal distribution with mode at ~2 and second peak at ~4,
- Precipitation frequency increases from $E_{auto} = 1$ to 4 then keep relatively constant.

(c), (d)

- E_{auto} calculated from N_c only has a single mode at ~2. Average values similar as in (a) and (b),
- Precipitation frequency does not show similar patterns as in (a) and (b), decrease then increase.


Regime-Dependent

Eauto	Non-precip.	Precip.		Eaccr	Non-precip.	Precip.
LTS (K)	LWP ≤ 75 g m ⁻²	LWP > 75 g m ⁻²		LTS (K)	LWP \leq 75 g m ⁻²	LWP > 75 g m ⁻²
> 18	2.31	2.58	Stable	> 18	1.40	1.49
(13.5, 18)	2.56	2.98	Mid-stable	(13.5, 18)	1.43	1.63
< 13.5	4.15	6.17	Unstable	< 13.5	1.51	1.70

- 1. Both enhancement factors increase when the boundary layer becomes less stable (more convections),
- 2. Both enhancement factors are larger in precipitating clouds than those in non-precipitating clouds.

Enhancement factors should be regime-dependent.

Grid-size-Dependent

≻ E_{auto} ↑ with grid size till 108 km grid then remain relatively constant,
 ≻ E_{accr} keep ↑ from 18 km grid to 180 km grid,

 \blacktriangleright E_{auto} < 3.2 and E_{accr} > 1.07 should be used in GCMs.

➢ For finer resolutions, E_{accr} ≈ obs. but E_{auto} is too large → too frequent,
 ➢ For coarser resolutions, E_{auto} ≈ obs. but E_{accr} is too small → too light.

6

Summary

- Too large $E_{auto} \rightarrow$ too frequent precipitation,
- Too small $E_{accr} \rightarrow$ too light precipitation,
- Both enhancement factors are regime-dependent (BL stability, CLWP, etc.),
- Values of enhancement factors also depend on model spatial resolution.

Thank you and welcome questions!

More details in poster session Tues. 3:30 – 5:00 pm # A1-132