ASR Science Team Meeting

March 19-23, 2018

Unsolved challenges for aerosol standards

CCN

Markus Petters

Standard CCN calibration procedure

There is no closure between modeled supersaturation and predictions from Köhler theory

Implication: We cannot independently verify correctness of calibration procedure

There is no closure between modeled instrument supersaturation and predictions from Köhler theory

Issues with test particles

(1) Supersaturation calculation requires particle mass. Calibration usually done based on mobility diameter. Particle sphericity and void space are an issue.

- Characterize particle shape/force particle restructuring (Mikhailov et al., 2009)
- Use wet size selection technique (Snider et al., 2006; Nakao et al., 2014)
- Use mass based selection.

There is no closure between modeled instrument supersaturation and predictions from Köhler theory

Issues with test particles

- (1) Supersaturation calculation requires particle mass. Calibration usually done based on mobility diameter. Particle sphericity and void space are an issue.
- (2) Purity of particle composition

- Work with more concentrated solutions and very clean water.
- Purity of particle composition difficult to establish

There is no closure between modeled instrument supersaturation and predictions from Köhler theory

Issues with test particles

- (1) Supersaturation calculation requires particle mass. Calibration usually done based on mobility diameter. Particle sphericity and void space are an issue.
- (2) Purity of particle composition
- (3) Cleanliness of particle surfaces

- Unknown if this is an issue for calibration
- Unclear how to account for it, if it is an issue

Different calibration standards disagree

Questions

There is no closure between modeled instrument supersaturation and predictions from Köhler theory

Issues with test particles

- (1) Supersaturation calculation requires particle mass. Calibration usually done based on mobility diameter. Particle sphericity and void space are an issue.
- (2) Purity of particle composition
- (3) Cleanliness of particle surfaces

State of the Science

- (1) Atomized ammonium, dried, mobility-selected ammonium sulfate is the *de facto* aerosol standard for calibrating CCN instruments.
- (2) Methods for generation and models to compute supersaturation are not standardized.
- (3) Quality of test aerosol is unclear.

What would a good CCN calibration standard look like?