How much SOA is formed from biomass burning (BB-SOA)?

Chamber measurements are complex due to vapor/particle wall losses

Models vary in terms of BB-SIVOC emissions and their SOA yields

- ➢ Most aircraft observations following BB plumes show almost constant ∆OA/ ∆CO with aging: Net OA (SOA+POA) does not change with aging
- But degree of oxygenation of OA (O/C ratio) increases substantially with aging and results in formation of more oxidized OA (*e.g, Jolleys et al. 2012*) SOA
- ➢ How does △OA/ △CO remains constant across different fires even though OA becomes more oxidized?
- Hypothesis: SOA formation is balanced by dilution and evaporation of POA in most ambient studies

Insights from 3D Chemical Transport Models

Pacific Northwest

Proudly Operated by Battelle Since 1965

Shrivastava et al. 2015, JGR

Model predicts 60-80% of OA is SOA from biomass burning

Model configurations included semi-volatile organics (SIVOCs)

MODIS satellite and E3SM model simulated AOD over South Africa: 10-year means

Pacific Northwest NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

- Simulated BB-SOA burden is a factor of 3 to 5 higher than primary BB-POA
- Similar factors over most other biomass burning regions, globally

May 8, 2018

- Simulations show even if POA is assumed non-volatile, 3 to 5 times more BB-SOA needed to explain aircraft OA and AOD in biomass burning regions
- If ∆OA/ ∆CO is interpreted as no additional OA added during aging, can GFED/FINN fire POA emissions be too low by factors of 3 to 5?
- POA has complex variation with fire type and dilution
- Unidentified low volatility organic gases are not represented in GFED fire estimates.

Measurements needed to characterize BB-SOA

- Pacific Northwest NATIONAL LABORATORY Proudly Observed by Battelle Since 1965
- How do OA properties (volatility, hygroscopicity, optical properties, CCN) change with BB-SOA formation?
- OA loss processes need to be better characterized: Gasphase fragmentation, heterogeneous loss, wet removal
- Difficult to deconvolve primary BB-POA and BB-SOA from AMS measurements
- Aqueous processing of biomass burning emissions can also form SOA
- Measurements also needed to constrain aqueous BB-SOA

- Biomass burning is a large source of fine organic aerosols
- Modeling suggests large BB-SOA formation needed to explain aircraft observed OA and satellite AOD in biomass burning regions
- If actual BB-SOA formation were lower, semi-volatile POA emissions need to be much higher than current fire inventories
- > Wet removal is another source of modeling uncertainty
- ➢ How can we reconcile constant ∆OA/ ∆CO with large increase in degree of oxygenation across most fire types?

Back-up Slides

Proudly Operated by Battelle Since 1965

Satellite and E3SM model simulated AOD over South America

