Characterizing the Impact of Entrainment Rate in Stratocumulus from ARM Observations and Large-Eddy Simulations

David B. Mechem¹, V. P. Ghate, L. A. McMichael, J. M. Eissner, M. P. Jensen, and S. E. Giangrande

¹Department of Geography and Atmospheric Science
University of Kansas

Joint ARM User Facility and ASR PI Meeting
12 June 2019

We gratefully acknowledge support from the Department of Energy Office of Science.
Objectives

• Observationally constrain stratocumulus entrainment rates from the DOE MAGIC cruises and explore sensitivity to environmental parameters
• Use LES to investigate the importance of entrainment mechanisms relative to other processes governing cloud properties.

The importance of entrainment to stratocumulus cloud properties

Rate of change of cloud-base height with time:

\[
\frac{dz_{cb}}{dt} = -\frac{R_d T_{cb}}{g \bar{q}_T} \left(\frac{L_v R_d}{C_p R_v T_{cb}} - 1 \right)^{-1} \frac{w_e \Delta \bar{q}_T}{z_i} + \frac{1}{g} \left(1 - \frac{C_p R_v T_{cb}}{R_d L_v} \right)^{-1} \frac{w_e \Delta S_l}{z_i}
\]

\text{drying term} + \text{warming term}

Assume a typical stratocumulus example (DYCOMS–II RF01):

\[
\bar{q}_T = 8.0 \text{ g kg}^{-1}
\]

\[
\Delta \bar{q}_T = -7.5 \text{ g kg}^{-1}
\]

\[
\Delta \theta = 10 \text{ K}
\]

\[
T_{cb} = 280 \text{ K}
\]

\[
z_i = 840 \text{ m}
\]

An uncertainty/error of 2.0 mm s\(^{-1}\) in entrainment rate leads an uncertainty of 108 m in cloud thinning over a 6-hour period!
MAGIC field campaign

Zhou et al. (J. Climate, 2015)

20–25 July 2013

Deeper, weaker inversion, more decoupled
Calculating MAGIC entrainment rates from mass budget

\[\frac{\partial \bar{h}}{\partial t} + (\bar{u} - \bar{u}_{\text{ship}}) \frac{\partial \bar{h}}{\partial x} + (\bar{v} - \bar{v}_{\text{ship}}) \frac{\partial \bar{h}}{\partial y} = w_e + w_s. \]

Profiling cloud radar
GOES satellite
Sfc. met station on ship
ECMWF reanalysis

ECMWF vertical motion
MAGIC entrainment rates

\[
\frac{\partial h}{\partial t} + (\bar{u} - \bar{u}_{\text{ship}}) \frac{\partial h}{\partial x} + (\bar{v} - \bar{v}_{\text{ship}}) \frac{\partial h}{\partial y} = w_e + w_s
\]

<table>
<thead>
<tr>
<th>Start date (YYYYMMDD)</th>
<th>Local change in cloud top height (mm/s)</th>
<th>Horizontal advection (mm/s)</th>
<th>Large-scale vertical air motion at cloud top (mm/s)</th>
<th>Entrainment rate (mm/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Std</td>
<td>Mean</td>
<td>Std</td>
</tr>
<tr>
<td>20121104</td>
<td>9.74</td>
<td>2.14</td>
<td>-1.07</td>
<td>1.97</td>
</tr>
<tr>
<td>20130609</td>
<td>2.81</td>
<td>4.79</td>
<td>4.01</td>
<td>9.05</td>
</tr>
<tr>
<td>20130708</td>
<td>8.44</td>
<td>4.65</td>
<td>-5.13</td>
<td>5.83</td>
</tr>
<tr>
<td>20130717</td>
<td>-2.69</td>
<td>6.50</td>
<td>2.52</td>
<td>5.20</td>
</tr>
<tr>
<td>20130720</td>
<td>6.37</td>
<td>3.24</td>
<td>-0.17</td>
<td>2.83</td>
</tr>
<tr>
<td>20130730</td>
<td>-3.80</td>
<td>3.57</td>
<td>2.78</td>
<td>3.81</td>
</tr>
<tr>
<td>20130804</td>
<td>9.62</td>
<td>4.97</td>
<td>0.66</td>
<td>2.21</td>
</tr>
<tr>
<td>All</td>
<td>4.99</td>
<td>6.44</td>
<td>0.18</td>
<td>5.44</td>
</tr>
</tbody>
</table>
MAGIC entrainment rates

Graph showing the variation of velocity with longitude and temperature difference.
Factors governing thinning and recovery of marine stratocumulus
Factors governing thinning and recovery of marine stratocumulus

- Thin, transient stratocumulus (31 Aug 2012) — midday-to-afternoon
- SAM LES, setup based on CIRPAS Twin Otter profiles, and large-scale models (ECMWF, NOGAPS)
- 20+ sensitivity simulations to determine what factors most strongly govern cloud properties
- Analyze LES output in mixed-layer model (MLM) framework
Mixed-layer model analysis of LES output

- Based on Wood (JAS, 2007), Van der Dussen (JAS, 2014); Ghonima et al. (2015)
Factors governing thinning and recovery of coastal stratocumulus

Cloud thinning

Cloud thickening

Discrepancy associated with decoupling during early period
Conclusions

- Entrainment estimates from MAGIC are highly variable and exhibit no obvious diurnal cycle nor dependence on longitude.
- Large-scale vertical motion is highly variable and includes periods of ascent.
- Even in the presence of substantial afternoon solar heating, entrainment fluxes remain active.
- Thin clouds demonstrate unexpected resilience.
- Estimates of entrainment rate must be accompanied by uncertainties and a description of method.