Meteorology both masks and magnifies the aerosol-cloud radiative effect

Ian Glenn1,2
Graham Feingold2, Jake Gristey1,2
Takanobu Yamaguchi1,2

1Cooperative Institute for Research in Environmental Sciences, (CIRES) University of Colorado, Boulder, CO, USA
2Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA

Funding: BER/DOE Grant # DE-SC0016275
LES ARM Symbiotic Simulation and Observation (LASSO)

- Complement mega-site observations with routine large eddy simulation (LES)

- Support community study of atmospheric processes and evaluation of parameterizations (Gustafson, Vogelmann et al.)

- We have used LASSO and additional observations to study aerosol-cloud-radiation variability
What are the radiative consequences of aerosol co-variability with cloud?

• Understanding the shortwave radiative effect of shallow clouds over land is important for climate change science and solar power

• **Aerosol perturbations** can cause variation in cloud drop number, changing the brightness of clouds (Twomey effect)

• **Meteorology** also changes cloud brightness

• Here we look at co-variability between meteorological drivers of cloud albedo

Many bright clouds? Few, dim clouds?

Poster #32 Wednesday 5:00 – 6:30 p.m.
We added **Aerosol Variability** from observations to LASSO

- LES input :: 1-minute (1-hour smoothed) SGP near-surface observations
 - NOAA-AOS / CCN and CN-counter
 Betsy Andrews (NOAA / CIRES)

- Mixing and aerosol activation is simulated
 - System for Atmospheric Modeling (SAM-LES)
 \(\Delta z = 30 \text{m}, \Delta x = 100 \text{m}, D \approx (24 \text{ km})^3 \)
 Microphysics: 2-moment
 Radiation: RRTMG

- Number of cloud droplets \(N \) is thus a simulated quantity, constrained by observations
Does aerosol and "meteorological" co-variation mask or magnify the radiative effect of cloud droplet number perturbations?
For shortwave (solar) radiation, the relative Cloud Radiative Effect (rCRE) is approximately equal to the cloud fraction, f, times the cloud albedo, A (Xie et al. 2014)

$$rCRE = f \cdot A$$
For shortwave (solar) radiation, the relative Cloud Radiative Effect (rCRE) is approximately equal to the cloud fraction, \(f \), times the cloud albedo, \(A \) (Xie et al. 2014).
\[r\text{CRE} = f \cdot A, \quad A \approx A(L, N) \]

- \(A \) = Cloud Albedo
- \(L \) = Liquid Water Path
- \(N \) = Number of Cloud droplets
\[r \text{CRE} = f \cdot A, \quad A \approx A(L, N) \]

- **A** = Cloud Albedo
- **L** = Liquid Water Path
- **N** = Number of Cloud droplets
\[rC{\text{CRE}} = f \cdot A, \quad A \simeq A(L, N) \]

A = Cloud Albedo
L = Liquid Water Path
N = Number of Cloud droplets
rCRE Budget

\[r\text{CRE} = f \cdot A \quad , \quad A(L, N) \]

Budget analysis:
How does rCRE change as cloud drop number \(N \) changes?
rCRE Budget

\[rCRE = f \cdot A \quad , \quad A(L, N) \]

Budget analysis:
How does rCRE change as cloud drop number \(N \) changes?

\[\ln(rCRE) = \ln f + \ln A \]

\[\frac{d \ln rCRE}{d \ln N} = \]
rCRE Budget

\[rCRE = f \cdot A, \quad A(L, N) \]

Change in rCRE with change in \(N \) = Radiative effect of drop Number variation (Twomey Effect) + Radiative effect of LWP variation + Radiative effect of cloud fraction variation

\[
\frac{d \ln rCRE}{d \ln N} = \left(\frac{\partial \ln A}{\partial \ln N} \right) + \left(\frac{\partial \ln A}{\partial \ln L} \right) \frac{d \ln L}{d \ln N} + \frac{d \ln f}{d \ln N}
\]
rCRE Budget

\[r\text{CRE} = f \cdot A \cdot A(L, N) \]

Temporal Numerical Differentiation
(Numerical Recipes, 2007)

Timescale of variation
\(\sim 1 \) hour

\[
\frac{d \ln r\text{CRE}}{d \ln N}(t) = \frac{\partial \ln A}{\partial \ln N}(t) + \frac{\partial \ln A}{\partial \ln L} \frac{d \ln L}{d \ln N}(t) + \frac{d \ln f}{d \ln N}(t)
\]
rCRE Budget

Change in rCRE with change in N = Radiative effect of drop Number variation (Twomey Effect) + ...

\[
\frac{d \ln rCRE}{d \ln N}(t) = \frac{\partial \ln \mathcal{A}}{\partial \ln N}(t) + \frac{\partial \ln \mathcal{A}}{\partial \ln L} \frac{d \ln L}{d \ln N}(t) + \frac{d \ln f}{d \ln N}(t)
\]

Bar = Mean
Whisker +/- 1.5 Std. Dev.
rCRE Budget

1. The radiative effect of an N perturbation is magnified by concurrent changes in cloud fraction f.

2. The concurrent L response is sometimes positive, sometimes negative - magnifying or masking N.

\[
\frac{d \ln \text{rCRE}}{d \ln N}(t) = \frac{\partial \ln A}{\partial \ln N}(t) + \frac{\partial \ln A}{\partial \ln L} \frac{d \ln L}{d \ln N}(t) + \frac{d \ln f}{d \ln N}(t)
\]
Mutual Information:

We use an independent analysis called Mutual information (MI) to quantify how much rCRE variability is explained by different variables (Shannon 1949)

\[
\text{MI}(y, x) = \sum_{X} \sum_{Y} p(x, y) \log \frac{p(x, y)}{p(x) \cdot p(y)}
\]

MI tells us:
Which variable x is best at explaining y?

CMI tells us:
Which pair (x,z) is best at explaining y?

\[
\text{CMI}(y, x|z) = \sum_{X} \sum_{Y} \sum_{Z} p(x, y, z) \log \frac{p(z) \cdot p(x, y, z)}{p(x, z) \cdot p(y, z)}
\]
Mutual Information:

\[
\text{MI} :: \text{rCRE} \leftrightarrow f_c = 65\%
\]

\[
\text{MI}(x, y) = \sum p(x, y) \log \frac{p(x, y)}{p(x) \cdot p(y)}
\]
Mutual Information:

\[\text{MI} :: \text{rCRE} \leftrightarrow f_c = 65\% \]

\[\text{MI} :: \text{rCRE} \leftrightarrow L_c = 34\% \]

\[\text{MI}(x, y) = \sum p(x, y) \log \frac{p(x, y)}{p(x) \cdot p(y)} \]
Mutual Information:

\[MI :: rCRE \leftrightarrow f_c = 65\% \]

\[MI :: rCRE \leftrightarrow L_c = 34\% \]

\[MI :: rCRE \leftrightarrow N_c = 18\% \]

\[MI(x, y) = \sum p(x, y) \log \frac{p(x, y)}{p(x) \cdot p(y)} \]
Mutual Information:

\[
\text{MI} :: \text{rCRE} \leftrightarrow f_c = 65\%
\]

\[
\text{MI} :: \text{rCRE} \leftrightarrow L_c = 34\%
\]

\[
\text{MI} :: \text{rCRE} \leftrightarrow N_c = 18\%
\]

\[
\text{MI}(x, y) = \sum p(x, y) \log \frac{p(x, y)}{p(x) \cdot p(y)}
\]

\[
\text{CMI}(y, x | z) = \sum_x \sum_y \sum_z p(x, y, z) \log \frac{p(z) \cdot p(x, y, z)}{p(x, z) \cdot p(y, z)}
\]

\[
\text{CMI (rCRE, } f | L) = 71\%
\]
Mutual Information:

<table>
<thead>
<tr>
<th>MI :: rCRE ↔ f_c</th>
<th>$65%$</th>
</tr>
</thead>
<tbody>
<tr>
<td>MI :: rCRE ↔ L_c</td>
<td>$34%$</td>
</tr>
<tr>
<td>CMI (rCRE, f</td>
<td>L)</td>
</tr>
<tr>
<td>CMI (rCRE, L</td>
<td>N)</td>
</tr>
<tr>
<td>MI :: rCRE ↔ N_c</td>
<td>$18%$</td>
</tr>
</tbody>
</table>

\[
\text{MI}(x, y) = \sum p(x, y) \log \frac{p(x, y)}{p(x) \cdot p(y)}
\]

\[
\text{CMI}(y, x|z) = \sum_x \sum_y \sum_z p(x, y, z) \log \frac{p(z) \cdot p(x, y, z)}{p(x, z) \cdot p(y, z)}
\]
Mutual Information:

\[
\text{MI} :: r\text{CRE} \leftrightarrow f_c = 65\%
\]

\[
\text{MI} :: r\text{CRE} \leftrightarrow L_c = 34\%
\]

\[
\text{MI} :: r\text{CRE} \leftrightarrow N_c = 18\%
\]

\[
\text{CMI} (r\text{CRE}, f | L) = 71\%
\]

\[
\text{CMI} (r\text{CRE}, L | N) = 65\%
\]

\[
\text{CMI} (r\text{CRE}, f | N) = 80\%
\]
Explanation?

rCRE Budget

The role of N is small compared to f and L

Mutual Information:

The role of N is larger than the role of L

\[
\text{CMI (rCRE, } f | N) = 80\%
\]
Co-variability between terms

rCRE Budget

The role of N is small compared to f and L

Mutual Information:

The role of N is larger than the role of L

$$\text{CMI (rCRE, } f\mid N) = 80\%$$

$$\frac{d \ln \text{rCRE}}{d \ln N} = \frac{\partial \ln A}{\partial \ln N} + \frac{\partial \ln A}{\partial \ln L} \frac{d \ln L}{d \ln N} + \frac{d \ln f}{d \ln N}$$
\[
\frac{\ln r \text{CRE}}{\ln N}(t) = \frac{\partial \ln A}{\partial \ln N}(t) + \frac{\partial \ln A}{\partial \ln L} \frac{\ln L}{\ln N}(t) + \frac{\ln f}{\ln N}(t)
\]
\[
\frac{d \ln r \text{CRE}}{d \ln N}(t) = \frac{\partial \ln A}{\partial \ln N}(t) + \frac{\partial \ln A}{\partial \ln L} \frac{d \ln L}{d \ln N}(t) + \frac{d \ln f}{d \ln N}(t)
\]
\[
\frac{d \ln r \text{CRE}}{d \ln N}(t) = \frac{\partial \ln A}{\partial \ln N}(t) + \frac{\partial \ln A}{\partial \ln L} \frac{d \ln L}{d \ln N}(t) + \frac{d \ln f}{d \ln N}(t)
\]
Summary:

Magnifying the radiative effect

(Most common case)
A given N perturbation is able to increase the albedo a relatively **large** amount. The L response is **positive**.
Summary:

Magnifying the radiative effect

(Most common case)
A given \(N \) perturbation is able to increase the albedo a relatively **large** amount. The \(L \) response is **positive**.

Masking the radiative effect

(Less common)
They same size of \(N \) perturbation is only able to increase the albedo a **small amount**. The \(L \) response is **zero/negative**.

\[
\frac{d \ln r \text{CRE}}{d \ln N} = \frac{\partial \ln A}{\partial \ln N} + \frac{\partial \ln A}{\partial \ln L} \frac{d \ln L}{d \ln N} + \frac{d \ln f}{d \ln N}
\]

CMI (rCRE, \(f \)) \(\mid N = 80\% \)
Conclusions:

1. Detailed cloud simulations constrained by observations allow us to study the natural variation of aerosol-cloud-radiation interactions.

2. Mutual information analysis shows f and N variation explains 80% of the rCRE, while L and N variation explains 65%.

3. The radiative effects of N perturbations are magnified more often than masked by L and f responses.

A figure looking like this does imply aerosol effect is small... meteorological co-variability matters!