Meteorology both masks and magnifies the
aerosol-cloud radiative effect
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LES ARM Symbiotic
Simulation and
Observation (LASSO)

* Complement mega-site
observations with routine large
eddy simulation (LES)

e Support community study of
atmospheric processes and
evaluation of
parameterizations
(Gustafson, Vogelmann et al.)

* We have used LASSO and
additional observations to study
aerosol-cloud-radiation variability
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What are the radiative consequences of aerosol
co-variability with cloud?

Many bright clouds? Few, dim clouds?

Poster #32 Wednesday 5:00 — 6:30 p.m.

Understanding the shortwave radiative effect of
shallow clouds over land is important for climate
change science and solar power

Aerosol perturbations can cause
variation in cloud drop number, changing
the brightness of clouds (Twomey effect)

Meteorology also changes cloud
brightness

Here we look at co-variability between
meteorological drivers of cloud albedo
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We added Aerosol Variability
from observations to LASSO
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Surface aerosol Re-analysis
concentration meteorological

tendency S  LASSO+N, 4~ forcing

16 re-simulations
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¢ 3 Does aerosol and “meteorological”

co-variation mask or magnify the
radiative effect of cloud droplet
number perturbations?




rCRE=7f-A

For shortwave (solar) radiation, the
relative Cloud Radiative Effect (rCRE)
is approximately equal to
the cloud fraction, f, times
the cloud albedo, A
(Xie et al. 2014)



rCRE=f-A
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For shortwave (solar) radiation, the
relative Cloud Radiative Effect (rCRE)
is approximately equal to
the cloud fraction, f, times
the cloud albedo, A
(Xie et al. 2014)
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N = Number of Cloud
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rCRE Budget
rCRE=f-A A(L,N)

)

Budget analysis:

How does rCRE change as
cloud drop number N
changes?




rCRE Budget
rCRE=f-A A(L,N)

)

Budget analysis:

How does rCRE change as IH(ICRE) =1In f + In A

cloud drop number N
changes?

dinrCRE
dinN




rCRE Budget
rCRE=f-A A(L, N)

)

Radiative effect of

Change in 4 Numb Radiative effect of Radiative effect of

rCRE with = rop Number LWP cloud fraction
variation L S

change in N variation variation

(Twomey Effect)

dIntCRE ~ 9lnA  dlnAdlnL  dlnf

o N~ omN | dmLdlnN | dlnN
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rCRE Budget
rCRE=f-A A(L, N)

)

Temporal Numerical

Differentiation
(Numerical Recipes, 2007)

Timescale of variation
~ 1 hour

dInrCRE Oln A OlnAdlnL dln f
dln N (t) = (9111N(t)+ (911rll)(1111]\f(t)+ dlnN(t)




16 days LASSO shallow cumulus rC R E B u d get
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16 days LASSO shallow cumulus rC R E B u d get
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Mutual Information:

We use an independent analysis ~ p(Q;’ y)
called Mutual information (MI) to MI(?J» 33) =/ JP(an y) log

qguantify how much rCRE variability is X Y p(gj) p(y)
explained by different variables

(Shannon 1949) Ml tells us:

Which variable x is best at explaining y?

CMl tells us:
Which pair (x,z) is best at explaining y?

CMI(y, z|2) Yyy‘p (,y, ) log p(2) - p(z,y, 2)

X v 7z p(Jf,Z) -p(y,z)




Mutual Information:

[ MI :: rCREHfC:65%1
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Mutual Information:

[ MI :: rCREHfC:65%1

[MI :: rCREHLC:34%1




Mutual Information:

[ MI :: rCREchzﬁf)%}

[MI :: rCREHLC:34%1

[MI . TCRE < N, = 18%}




Mutual Information: MI(z,y) =

[ MI :: rCREchzﬁf)%}

CMI(y, x|z)

N\

CMI (rCRE, f|L) = 71%

[MI :: rCREHLC:34%1/

[MI : TCRE +& N, = 18%}




Mutual Information: MI(z,y) =

[ MI :: rCREchzﬁf)%}

CMI(y, x|z)

N\

CMI (rCRE, f|L) = 71%

[MI :: rCREHLC:34%1<

CMI (rCRE, L|N) = 65%

[MI : TCRE +& N, = 18%}/




Mutual Information: Mi(z,9) = 3 p(z, ) log (2 y)

[ MI :: rCREchzﬁf)%}

CMI (rCRE, f|L) = 71%

[MI :: I‘CREHLC:34%1<

CMI (rCRE, L|N) = 65%
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Explanation?

rCRE Budget

The role of
N is small
compared
tofandlL

ulll

dInrtCRE  9lmA _ dlnAdInL  dinf

— ——

dinN = OJOlnN OlnLdIn N din N

Mutual Information:

The role of N
is larger than
the role of L

CMI (rCRE, f| N) = 80%
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Co-variability between terms
rCRE Budget

aal

dInrCRE ~ 9lnA

dln NV

 O0lnN

The role of
N is small
compared
tofandlL

OlnAdnL dln f

OlnLdIn N dln N

Mutual Information:

The role of N
is larger than
the role of L

CMI (rCRE, f| N) = 80%
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(t) = () + () + (t)
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dlanRE(t) alnA(t)+8InAdlnL(t)+ dlnf(t)
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Summary:
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dlnrCRE  9lnA

dln N Oln N

Magnifying the radiative effect

(Most common case)

A given N perturbation is able to increase the albedo a

relatively large amount. The L response is positive.
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Summary:

Magnifying the radiative effect
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Conclusions:

1. Detailed cloud simulations constrained by
observations allow us to study the natural
variation of aerosol-cloud-radiation interactions.

2. Mutual information analysis shows fand N
variation explains 80% of the rCRE, while L and N
variation explains 65%.

3. The radiative effects of N perturbations are

magnified more often than masked by L and f
responses

A figure looking like this does imply aerosol
effect is small... meteorological co-variability
matters! 31



