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A Structural Error in Many (Most) Cumulus Schemes?
“Degree” of convective organization/clustering is invariant
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Do ESMs Need It?

Situation-adaptive org. param. improves the MJO-mean state tradeoff syndrome
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Representation of Convective Organization in ESMs

Two-way feedbacks between convective updrafts and boundary layer cold pools
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Representation of Convective Organization in ESMs

Two-way feedbacks between convective updrafts and boundary layer cold pools

Unified convection scheme (UNICON, Park 2014)
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Evaluation of Conv. Org. Parameterizations in ESMs
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How can “degrees” of observed
convective organization/clustering be
guantified?

How can individual parameterized
processes be tested against
observations?



Quantification of Convective Clustering
Organization Index (l,.,) of Tompkins and Samie (2017)
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AMIE/DYNAMO 2-day rain events oo o
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l,rg Captures the observed clustering of tropical convection
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MC3E May 23" rain event

lorg Captures the clustering within the locally developed system
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1/-Year C-POL Data

C-POL data provides statistics of I, and its relationship with other variables

Joint PDF of column relative humidity (CRH) with number of CCEs (left), echo top height (middle), and I, (right)
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Evaluation of Conv. Org. Parameterizations in ESMs
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WRF Simulation Driven by ARM Large-scale Forcing Data

The observed convective clustering is reasonably reproduced
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CRM Intervention Experiment
Convection is less organized with weaker boundary layer cold pools

Small Org Large Org
: o Boundary layer temperature is nudged toward the domain
® o mean at each time step (AMIE/DYNAMO Oct 16% rain event)
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SCM Simulation of the MC3E May 23" Rain Event
Driven by ARM Forcing Data
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Cold Pools Properties (MC3E May 23 rain event)
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* Parameterizations of mesoscale convective organization make plume
properties situation-adaptive and thereby help ESMs better represent
variability in the system (e.g., MJO).

* A few existing cumulus schemes represent two-way interactions between
convective updrafts and boundary layer cold pools
* None of them represents interactions with stratiform clouds; can ARM observations
help develop such parameterizations?

 Spatial distribution of convective elements can be used to quantify the
degree of convective organization/clustering

 ARM scanning precipitation radar

* Process-level understanding of the underlying mechanisms of convective
organization requires synergetic use of observations and cloud-system
resolving model simulations

 ARM large-scale forcing data

* Characterizations of convective updrafts, downdrafts, and cold pools using ARM
observations



