Evaluation of Parameterizations of Mesoscale Convective Organization in Earth System Models

> Daehyun Kim¹, Wei-Yi Cheng¹, Angela Rowe¹, Yumin Moon¹, Min-Seop Ahn¹, and Sungsu Park² ¹University of Washington ²Seoul National University June 10, 2019

A Structural Error in Many (Most) Cumulus Schemes? "Degree" of convective organization/clustering is invariant

Do ESMs Need It?

Situation-adaptive org. param. improves the MJO-mean state tradeoff syndrome

Representation of Convective Organization in ESMs Two-way feedbacks between convective updrafts and boundary layer cold pools

Cold pools (prognostic)

Downdrafts (diagnostic)

Small Org

Large Org

Mapes and Neale (2011) parameterization

Mapes and Neale 2011; Park 2014; Del Genio et al. 2015; Baohua and Mapes 2017

Representation of Convective Organization in ESMs Two-way feedbacks between convective updrafts and boundary layer cold pools

Unified convection scheme (UNICON, Park 2014)

$$\begin{split} \frac{\partial a_U}{\partial t} &= -U_{\rm PBL} \frac{\partial a_U}{\partial x} - V_{\rm PBL} \frac{\partial a_U}{\partial y} + (\delta_c - \epsilon_c) - \frac{g}{\Delta p_h} \left(\sum_i \dot{M}_h^i - \sum_j \dot{M}_{Uh}^j \right) - \frac{g}{\Delta p_h} \left[\sum_j (\dot{M}_{D,h}^j + \dot{M}_{U,h}^j) - \sum_i \dot{M}_h^i \right] a_U \\ \frac{\partial a_D}{\partial t} &= -U_{\rm PBL} \frac{\partial a_D}{\partial x} - V_{\rm PBL} \frac{\partial a_D}{\partial y} + (\epsilon_c - \delta_c) + \frac{g}{\Delta p_h} \sum_j \dot{M}_{D,h}^j - \frac{g}{\Delta p_h} \left[\sum_j (\dot{M}_{D,h}^j + \dot{M}_{U,h}^j) - \sum_i \dot{M}_h^i \right] a_D, \\ \frac{\partial}{\partial t} (\Delta \phi_U) &= -U_{\rm PBL} \frac{\partial}{\partial x} (\Delta \phi_U) - V_{\rm PBL} \frac{\partial}{\partial y} (\Delta \phi_U) \\ &- \frac{g}{\Delta p_h} \left\{ \sum_j \left[\dot{M}_{D,h}^i (\dot{\phi}_{D,h}^j - \phi_{\rm PBL}) - \frac{a_D}{a_U} \dot{M}_{Uh}^j (\dot{\phi}_{U,h}^j - \phi_{\rm PBL}) \right] + \frac{a_D}{a_U} \sum_i \dot{M}_h^i (\dot{\phi}_h^i - \phi_{\rm PBL}) \right\} \\ &+ g \left\langle \frac{a_D}{a_U} \sum_i \dot{M}^i \dot{S}_\phi^i + \sum_j \left(\frac{a_D}{a_U} \dot{M}_U^j \ddot{S}_{\phi,U}^i - \dot{M}_D^j \ddot{S}_{\phi,D}^j \right) \right\rangle_0^h + \langle (S_{e,U} - \bar{S}_e)_\phi \rangle_0^h \\ &- \left\{ \frac{\delta_c}{a_D a_U} + \frac{g}{\Delta p_h} \left[\sum_j \left(\dot{M}_{G,h}^i + \frac{1}{a_U} \dot{M}_{Uh}^i \right) + \rho_s C_d V_s + \rho_h W_{e,h} - \frac{1}{a_U} \sum_i \dot{M}_h^i \right] \right\} \Delta \phi_U, \quad \text{and} \\ \frac{\partial}{\partial t} (\Delta \phi_D) &= -U_{\rm PBL} \frac{\partial}{\partial x} (\Delta \phi_D) - V_{\rm PBL} \frac{\partial}{\partial y} (\Delta \phi_D) \\ &+ \frac{g}{\Delta p_h} \left\{ \sum_j \left[\frac{a_U}{a_D} \dot{M}_D^j \dot{S}_{\phi,D}^i - \phi_{\rm PBL} \right] - \dot{M}_U^i \dot{S}_\phi^i \right\} - \sum_i \dot{M}^i \dot{S}_\phi^i \right\}_0^h + \langle (S_{e,D} - \bar{S}_e)_\phi \rangle_0^h \\ &- \left\{ \frac{e}{\Delta p_h} \left\{ \sum_j \left[\frac{a_U}{a_D} \dot{M}_D^j \dot{S}_{\phi,U}^j - \phi_{\rm PBL} \right] - \dot{M}_U^i \dot{S}_\phi^i \right\}_0^h + \langle (S_{e,D} - \bar{S}_e)_\phi \rangle_0^h \\ &- \left\{ \frac{e}{a_D a_U} + \frac{g}{\Delta p_h} \left\{ \sum_i \left[\frac{1}{a_D} \dot{M}_D^j \dot{S}_{\phi,U}^j \right] - \sum_i \dot{M}^i \dot{S}_\phi^i \right\}_0^h + \langle (S_{e,D} - \bar{S}_e)_\phi \rangle_0^h \\ &- \left\{ \frac{e}{a_D a_U} + \frac{g}{\Delta p_h} \left[\sum_i \left(\frac{1}{a_D} \dot{M}_D^j \dot{M}_D^j + \phi_{U,H}^j \right) + \rho_s C_d V_s + \rho_h W_{e,h} \right] \right\} \Delta \phi_D, \end{split}$$

Mapes and Neale 2011; Park 2014; Del Genio et al. 2015; Baohua and Mapes 2017

Evaluation of Conv. Org. Parameterizations in ESMs

- How can "degrees" of observed convective organization/clustering be quantified?
- How can individual parameterized processes be tested against observations?

Quantification of Convective Clustering Organization Index (I_{org}) of Tompkins and Samie (2017)

MC3E May 23rd rain event

I_{org} captures the clustering within the locally developed system

Poster (Wei-Yi Cheng et al, tomorrow afternoon)

17-Year C-POL Data

C-POL data provides statistics of I_{org} and its relationship with other variables

Data help acknowledgement: Robert Jackson and Scott Collis (ANL)

Evaluation of Conv. Org. Parameterizations in ESMs

- How can "degrees" of observed convective organization/clustering be quantified?
- 2. How can individual parameterized processes be tested against observations?

WRF Simulation Driven by ARM Large-scale Forcing Data

The observed convective clustering is reasonably reproduced

Cheng et al. 2019

CRM Intervention Experiment

Convection is less organized with weaker boundary layer cold pools

Cheng et al. 2019

SCM Simulation of the MC3E May 23rd Rain Event Driven by ARM Forcing Data

Cold Pools Properties (MC3E May 23rd rain event)

Summary

- Parameterizations of mesoscale convective organization make plume properties situation-adaptive and thereby help ESMs better represent variability in the system (e.g., MJO).
- A few existing cumulus schemes represent two-way interactions between convective updrafts and boundary layer cold pools
 - None of them represents interactions with stratiform clouds; can ARM observations help develop such parameterizations?
- Spatial distribution of convective elements can be used to quantify the degree of convective organization/clustering
 - ARM scanning precipitation radar
- Process-level understanding of the underlying mechanisms of convective organization requires synergetic use of observations and cloud-system resolving model simulations
 - ARM large-scale forcing data
 - Characterizations of convective updrafts, downdrafts, and cold pools using ARM observations