Retrievals of aerosol humidification factors by lidar during CHARMS

(Combined HSRL and Raman Measurement Study)

Kyle Dawson1,2, Rich Ferrare1, Rich Moore1, Tyler Thorsen1, Sharon Burton1, Chris Hostetler1, Marion Clayton1, Ed Eloranta3, John Goldsmith4

DOE ARM Meeting
10-June-2019, Bethesda MD

1NASA Langley Research Center, Hampton VA
2Universities Space Research Association, Columbia MD
3University of Wisconsin, Madison WI
4Sandia National Labs
How can lidar \(f(\text{RH}) \) help us to better understand climate?

- Produce a data record of \(f(\text{RH}) \) at or near cloud base

- Model improved by more accurate hygroscopicity parameterizations

- Reduced uncertainty on indirect effect
Raman water vapor channel adds essential meteorological information

Mixed Layer Height

Opportunity for Raman lidar improvement! Temperature retrievals

***AERI
Time series of lidar-retrieved humidification factors could dramatically increase spatiotemporal coverage.
Combining with Raman and HSRL extinction gives desirable humidification factor retrieval.

(a. 355 nm extinction)

\[\kappa_{\text{ext}} = 0.17 \]
\[\gamma = 0.51 \]

(b. 532 nm extinction)

\[\kappa_{\text{ext}} = 0.15 \]
\[\gamma = 0.48 \]
How do lidar results compare to the ground?

![Graph showing the relationship between Humidification Factor and Relative Humidity. The graph indicates a significant increase in Humidification Factor as Relative Humidity increases, with a notable peak at around 90%.]
How do lidar results compare to the ground?
How do lidar results compare to the ground?

Model Approach:
ACSM Chemistry

AERONET column PSD

Estimated $f(\text{RH})$

Nephelometer
Model
Lidar

Humidification Factor (θ)

Relative Humidity (%)
Time series of fit parameters makes sense with cloud humidity halo observations (Rauber et al., 2013)
Take Home Messages

1. Lidar can retrieve aerosol humidification factors $f(RH)$

2. These $f(RH)$ are retrieved near cloud base or at the top of the mixed layer where it is important for aerosol-cloud interactions.
 *** note $3\beta + 2\alpha \rightarrow$ volume concentrations \rightarrow kappa as in Petters and Kreidenweis, 2007 ***

3. Lidar $f(RH)$ aloft $\gg f(RH)$ from surface nephelometer measurements (i.e. surface PSDs and surface chemistry; reiterating take home message #1). Don’t forget about cloud proximity and ACI!

4. Surface chemical composition combined with ambient column PSD retrievals compares better to lidar retrievals (reiterating take home message #1 and #2)

5. CHARMS 2.0???
Acknowledgements

- Ed Eloranta for his HSRL
- John Goldsmith for helping to organize CHARMS
- Tyler Thorsen and Rich Ferrare for data processing
- NASA LaRC HSRL team for additional data processing
- Department of Energy for ARM facilities and datasets
- USRA and NASA for NPP opportunity

*** This research was supported by the U.S. Department of Energy's Atmospheric System Research, an Office of Science, Office of Biological and Environmental Research program, under Grant No. DE-SC0016274. We thank Rick Wagener, Laurie Gregory and Lynn Ma for their efforts in establishing and maintaining the SGP AERONET site. We also thank Robert Holz, Willem Marais, and Rob Newsom for their efforts in collecting the CHARMS data.***

Questions?

For more, see poster:

| Dawson | Kyle | Lidar-Retrieved Aerosol Humidification Factors at SGP Derived from CHARMS | Results from recent ARM field campaigns | B1 | Wed 3:30 - 5:00 pm |