Compact Automatic Rotational Raman Lidar System for Continuous Day- and Nighttime Temperature and Humidity measurements

Volker Wulfmeyer, Diego Lange, Andreas Behrendt, Shravan Muppa
Institute of Physics and Meteorology (IPM)
University of Hohenheim (UHOH)
Stuttgart, Germany

Severe gaps in the observation of thermodynamic profiles must be closed in order to advance our understanding of Earth system processes (Wulfmeyer et al. Rev. Geophys. 2015).
WV and T Raman lidar for MOSES

Key features:
- High accuracy and resolution of T and WV profiling day- and nighttime
- Fulfilling WMO Breakthrough and Goal Requirements for Nowcasting/VSRF in the lower troposphere
- Compact, operational, and robust
- Continuous operation with minor laser maintenance for > 3 years
- Remote control via mobile phone
- Eye safe

Interference filters:
Narrow-band, high transmission, side-band suppression
(e.g. Hammann et al. ACP 2015)

Laser:
High-power, injection-seeded diode-laser
(e.g. Wulfmeyer et al. OE 2000, Ostermeyer et al. AO 2005, Wagner et al. AO 2013)
>100 days operation by now

Scanner technology and appl.
(e.g. Späth et al. AMT 2016)

Real-time data processing with error propagation
(Lenschow et al. 2000, Wulfmeyer et al. JAS 2016)

Housing: Ultra-stable, thermally controlled frame and housing
MOSES Raman Lidar: Specifications

Transmitter
- Diode-pumped Nd:YAG laser
- 200 Hz, 20 W @ 355 nm

Receiver
- 40 cm primary-mirror telescope
- 4 channels: Elastic, RR1, RR2 and water vapor

Elastic and Raman channels (Licel GmbH)
- 7.5 m, 1 - 10 s (raw data)
- Both analog and photon counting mode

Primary Data Products:
- Temperature
- Water vapor mixing ratio
- Relative humidity
- Particle backscatter coefficient @ 355 nm
- Particle extinction coefficient @ 355 nm

Dimensions:
Approx. 2.1m x 2.6m x 1.4m (H x W x D)

Weight:
Approx. 900 kg

Operation temperature:
-20°C to 40°C

Power consumption:
Approx. 5 kW
WVTRL Performance

Water Vapor Mixing Ratio (g kg⁻¹)

Daytime

Nocturnal PBL
Convective PBL
Nocturnal PBL

10 s, 100 m
Water Vapor Mixing Ratio (g kg\(^{-1}\))

From 29.09.2018, 0:02:25 to 29.09.2018 23:56:52, Az = 36.60, El = -97.60

- **Daytime**
- **Nocturnal PBL**
- **Convective PBL**

300 s, 100 m
Daytime

Nocturnal PBL

Convective PBL

Temperature gradient at CBL top

Mid tropospheric lid

Temperature (K)

Temperature (K)

From 29.09.2018, 0:02:25 to 29.09.2018, 23:56:52, Az = 36.60, El = −97.60

WV and T profiling fully consistent with simulations and WMO requirements.
Raman Lidar: Statistical Uncertainties

Method of Wulfmeyer et al. JAS 2016

WMO Requirements for Nowcasting/VSRF in the Lower Troposphere:

- "Breakthrough" requirement (10 min, 300 m): 1 K
 Fulfilled >> 5 km!

- "Goal" requirement (5 min, 100 m): 0.5 K
 Fulfilled up to 4 km!

https://www.wmo-sat.info/oscar-staging/requirements
Scale-X Campaign – MOSES

https://blogs.helmholtz.de/moses/de/
https://scalex.imk-ifu.kit.edu/#campaigns

Hohenpeißenberg – Bavaria, Germany
Real-Time Control: LabView Panel

Temperature (K) Resolution: 7.5 m, 10 s

Mixing ratio (g kg^-1) Resolution: 7.5 m, 10 s

Backscatter ratio (no unit) Resolution: 7.5 m, 10 s

10 s, 7.5 m
Applications of new WVTRL

- Climate monitoring
- Model verification
- Verification of other observing systems
- Process studies and improvement of model physics:
 - Land-surface exchange
 - PBL turbulence research including entrainment
 - Mesoscale processes such as convection initiation
 - Aerosol-cloud interaction
- Nowcasting
- Data assimilation for numerical weather prediction
- Artificial intelligence and machine learning
- Airborne operation, ...