Improved long-term ARM records for cross-site/crosscampaign data comparison

Steve Klein

Cross-site/time comparison

- Cross-site analysis can be very powerful at yielding insights
- With the ever growing list of ARM deployments, there are now so many opportunities for cross-site/cross-time analysis:
 - Comparing MCS deep convection in the Amazon to SGP (Die Wang)
 - Comparing Ice nuclei abundance across many campaigns (Paul DeMott)
 - Examining aerosol variations over 20 years of SGP data (Peter Marinescu)
 - Marine low cloud comparisons
 - subtropics (e.g. MAGIC vs. LASIC)
 - middle & high latitudes (MARCUS vs. COMBLE or ENA)

JGR Atmospheres Terai et al. 2019

RESEARCH ARTICLE

10.1029/2018JD029359

Key Points:

- The cloud optical depth response to warming is driven by the liquid water path response
 The adiabatic lapse rate and
- phase-partitioning raporate to warming contribute to cold-cloud raponae
- The invention strength and decoupling response to warming
- contribute to warm-cloud raponae

Mechanisms Behind the Extratropical Stratiform Low-Cloud Optical Depth Response to Temperature in ARM Site Observations

C. R. Terai¹, Y. Zhang¹, S. A. Klein¹, M. D. Zelinka¹, J. C. Chiu², and Q. Min³

¹Cloud Processes Research and Modeling Group, Lawrence Livermore National Laboratory, Livermore, CA, USA, ²Department of Aimospheric Science, Colorado State University, Fort Collins, CO, USA, ³Aimospheric Sciences Research Cenier, State University of New York at Albany, Albany, NY, USA

1 plot with data from 3 sites and 2 τ retrieval algorithms

Data Characteristics	
3 sites	SGP, ENA, NSA
Cloud retrieval algorithms	 Cloud boundaries (ARSCL) LWP (MWRRET) 2 τ retrievals (MPL(Chiu)/MFRSR(Min0] 3 water content, particle size retrievals (Shupe/Turner, Mace/Dong, Dong)
Meteorological Events	Single Layer Low-Level Overcast Clouds under an Inversion
Duration	 9 total years across the 3 sites but only 556 hours Note years were during 2003- 2010 (older years)

Questions regarding VAP data needs for multi-site, multi-year, regime-specific science studies

- Is all of the basic/routine and meteorological context data (soundings, ARSCL, LWP, surface radiation, surface fluxes, variational or NWP analysis) available in a quality-controlled form (e.g., ARMBE) from all sites and AMF campaigns?
- How would data users identify when and where the historical data is good?
- Is data quality summary information (at a campaign overview level) only available through word-of-mouth or through laborious searches?
- How can ARM facilitate identification of regimes of interest, but in a way that is preserves data-user flexibility?
- Is reprocessing possible to achieve better calibrated data? (e.g., cloud radar calibration via CloudSat, Kollias et al. 2019 AMT)
- If one processes old data, how does one prioritize which data gets processed?
 - Scientific value and interest (e.g. the 1st international AMF deployment: Niger 2006)
- How does one balance the need for attention to data from older vs. newer data/campaigns?

Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-34 Manuscript under review for journal Atmos. Meas. Tech. Discussion started: 4 March 2019 © Author(s) 2019. CC BY 4.0 License.

Calibration of the 2007-2017 record of ARM Cloud Radar Observations using CloudSat

Pavlos Kollias^{1,2}, Bernat Puigdomènech Treserras³ and Alain Protat⁴

The findings of this study are critical to past, on-going and planned studies of cloud and precipitation and *should assist the DOE ARM to build a legacy decadal ground-based cloud radar dataset for global climate model validation.*

