

The Roles of Large-Scale Advection and Land surface Conditions in the Initiation of Convection during HI-SCALE

July 8, 2019

SR

Jingyi Chen Mentor: Samson Hagos

Co-authors: Heng Xiao, Jerome Fast, Zhe Feng

PNNL is operated by Battelle for the U.S. Department of Energy

Convection Initiations and Land-Atmosphere Interactions

Negative soil moisture feedback ullet

Relatively drier (wetter) patches have more possibilities to receive rain in dry (wet) conditions.

Scientific Question:

Pacific

Northwest

How are the land surface conditions related to the initiation of convection and how does large-• scale advection affect this relationship?

Methodology

MODIS Terra ~1030 CST

- Time and Location:
 - August 30th, 2016
 - Southern Great Plain
 - HI-SCALE Field Campaign •
- A "golden day" with transitions from shallow to deep convection

WRF-LES Simulations

1. Control Simulation

- 08/30/2016 5:29 to 17:29
- Domain Size: 297km×297km
- Spatial Resolution: 300m
- Realistic SMOIS and LU. (Fast et al., JAMES, 2019, in revision)

2. "No Advection" Simulation

MODIS Aqua ~1350 CST

Wichita

Water Sparsely Vegetated Urban and Built-Up Croplands Permanent Wetlands Grasslands Open Shrublands Broadleaf Forest Needleleaf Forest

3

Impacts of Large-Scale Advection on Clouds

• Large-scale advection causes more organized clouds on the west of the domain.

$$-10^{2} (-10^{1} - 10^{1})$$

$$-10^{1} + 10^{-1} + 10^{-1} + 10^{-2} + 10^{-2} + 10^{-3} + 10^{-4} + 10^{-4} + 10^{-5} + 10^{-6} + 10^{-$$

Impacts of Large-Scale Advection on LAIs

In the absence of advection,

- clouds are more likely over the dry soil;
- rain rates increase earlier than those in the control simulation.

Cluster Analysis of "No Advection" Simulations

"K-means" unsupervised learning

- Samples: θ_e close to surface (~30m) ٠
- Features: 49 time steps ۲
- Three clusters •
- The features of convection close to the surface, represented by θ'_e , ulletare dramatically different.

Land and Cloud Properties of Each Cluster

The cluster with positive θ_e' is associated with low sensible heat, high latent heat, ٠ high soil moisture, and low cloud water path, and vice versa.

Summary

1. Large-scale advection weakens the land forcing and delays precipitations.

2. In the absence of advection, most of the clouds are over the dry soil while large-scale advection moves the clouds over the wet soil.

3. In the absence of advection, LAIs are explored by cluster analysis of θ_e .

- Learning algorithm successfully divides the time series of θ_e into three different clusters, which represent different convection features.
- Low HFX, high LH, and high SMOIS grids are associated with high θ_e .
- Clouds forms over high HFX, low LH, and low SMOIS grids, where low θ_e are observed.