The Roles of Large-Scale Advection and Land surface Conditions in the Initiation of Convection during HI-SCALE

July 8, 2019

Jingyi Chen
Mentor: Samson Hagos
Co-authors: Heng Xiao, Jerome Fast, Zhe Feng
Scientific Question:

- How are the land surface conditions related to the initiation of convection and how does large-scale advection affect this relationship?

- **Negative soil moisture feedback**

- Relatively drier (wetter) patches have more possibilities to receive rain in dry (wet) conditions.

Taylor et al., 2011, Nat. Geosci.

Hsu et al. 2017, J. Geophys. Res.
Case Overview

- **Time and Location:**
 - August 30th, 2016
 - Southern Great Plain
 - HI-Scale Field Campaign
- A “golden day” with transitions from shallow to deep convection

WRF-LES Simulations

1. **Control Simulation**
 - 08/30/2016 5:29 to 17:29
 - Domain Size: 297km x 297km
 - Spatial Resolution: 300m
 - Realistic SMOIS and LU.
 (Fast et al., JAMES, 2019, in revision)

2. **“No Advection” Simulation**
Impacts of Large-Scale Advection on Clouds

- Large-scale advection causes more organized clouds on the west of the domain.
Impacts of Large-Scale Advection on LAIs

In the absence of advection,
- clouds are more likely over the dry soil;
- rain rates increase earlier than those in the control simulation.
Cluster Analysis of “No Advection” Simulations

“K-means” unsupervised learning

- Samples: θ_e close to surface (~30m)
- Features: 49 time steps
- Three clusters
- The features of convection close to the surface, represented by θ_e', are dramatically different.
Land and Cloud Properties of Each Cluster

- The cluster with positive θ_e' is associated with low sensible heat, high latent heat, high soil moisture, and low cloud water path, and vice versa.
Summary

1. Large-scale advection weakens the land forcing and delays precipitations.
2. In the absence of advection, most of the clouds are over the dry soil while large-scale advection moves the clouds over the wet soil.
3. In the absence of advection, LAIs are explored by cluster analysis of θ_e.
 - Learning algorithm successfully divides the time series of θ_e into three different clusters, which represent different convection features.
 - Low HFX, high LH, and high SMOIS grids are associated with high θ_e.
 - Clouds forms over high HFX, low LH, and low SMOIS grids, where low θ_e are observed.

My poster is at 3:30-5:00 on Wednesday (B1).