Lidar Update

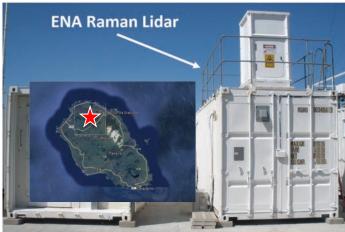
Rob Newsom DOE ASR PI meeting, June 10-14, North Bethesda/Rockville, MD

Proudly Operated by Battelle Since 1965

ARM currently operates the following "advanced" lidar systems

	SGP					ENA	NSA	OLI		
	C1	E32	E37	E39	E41	C1	C1	M1	AMF1	AMF2
HSRL							√			√
Raman	√					√		√		
Doppler	√	✓	√							

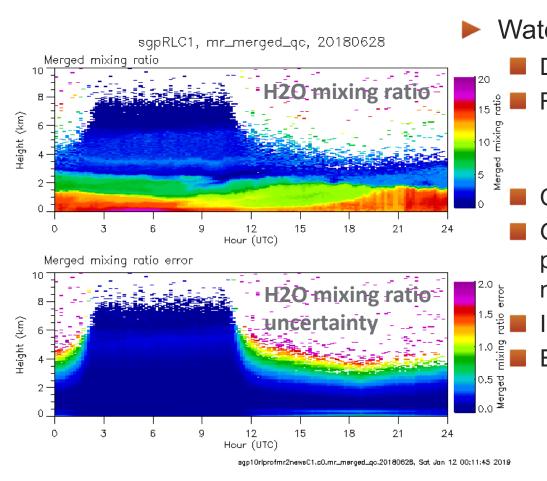
ARM also operates MPLs and Ceilometers at most sites



ARM Raman Lidars

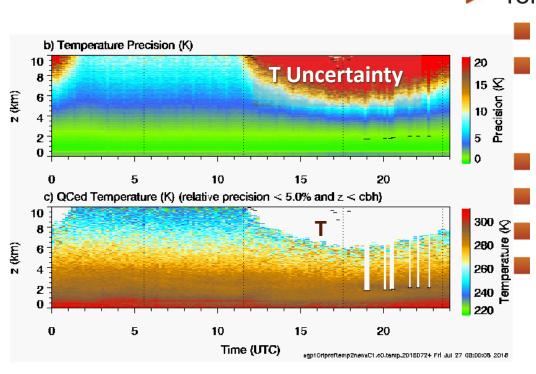
All systems developed by John Goldsmith at Sandia – Livermore All systems operate at 355 nm

- SGP C1
 - In operation since 1996
 - Upgraded and moved to radar cluster in Fall 2015
- ENA C1 (Graciosa)
 - In operation since 9/2015
 - Previously deployed at TWP C3 from DEC '10 to JAN '15
- AMF3 (Oliktok Point)
 - Deployed in 10/2014
 - Newest of the 3 ARM Raman lidars
 - Non-operational during winter (October-May)
 - There is talk of moving it to Barrow


Raman Lidar Data Products

- MERGE (rlprofmerge2news.c0)
 - Photon couting rates from 9 detection channels
 - Resolution: $\Delta z = 7.5$ m, $\Delta t = 10$ s
 - Cloud base height
- Water Vapor Mixing Ratio VAP (rlprofmr2news.c0)
- Temperature VAP (rlproftemp2news.c0)
- FEX VAP (rlproffex1thor.c0)
 - Aerosol and cloud optical propertires
 - Feature mask
 - Extinction coefficient
 - Aerosol Scattering Ratio
 - Volume backscatter coefficient
 - Linear Depolarization Ratio

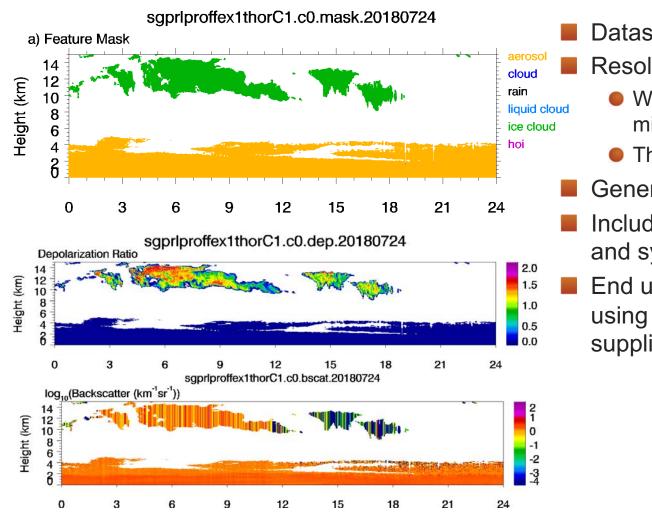
Raman Lidar H₂O Mixing Ratio VAP



Water Vapor Mixing Ratio VAP

- Datastream: rlprofmr2news.c0
- Resolution is configurable
 - We currently use $\Delta z = 60$ m, $\Delta t = 10$ min
 - The limit is $\Delta z = 7.5$ m, $\Delta t = 10$ sec
 - Calibrated using radiosondes
 - Generated using a delayed processing schedule, as opposed to near realtime.
 - Includes estimates of random error.
 - End users need to apply QC
 - Recommend filtering based on maximum acceptable relative error
 - Plot to the left uses a threshold of 25%

Raman Lidar Temperature VAP

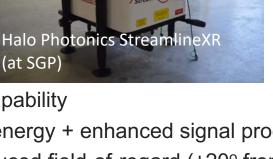

Temperature VAP

- Datastream: rlproftemp2news.c0
- Resolution is configurable
 - We currently use ∆z = 60m, ∆t=10 min
 - The limit is $\Delta z = 7.5$ m, $\Delta t = 10$ sec
- Calibrated using radiosondes
- Generated in near realtime.
 - Includes estimates of random error.
- End users need to apply QC
 - Recommend filtering based on maximum acceptable relative error
 - Plot to the left uses a threshold of 5%

Raman Aerosol VAP

Feature detection and EXtinction (FEX) VAP

- Datastream: rlproffex1thor.c0
- Resolution is configurable
 - We currently use $\Delta z = 30$ m, $\Delta t = 2$ min
 - The limit is $\Delta z = 7.5$ m, $\Delta t = 10$ sec
- Generated in near realtime.
- Includes estimates of random and systematic uncertainty.
- End users need to apply QC using the feature mask that is supplied in the output


Proudly Operated by Battelle Since 1965

ARM Doppler Lidars

- Specs
 - Manufacturer: Halo Photonics (UK)
 - Wavelength: 1.5 μm
 - Pulse width: 150ns (22.5m)
 - Pulse repetition Frequency: 15 kHz
 - Velocity precision: <10cm s⁻¹
 - StreamLine has full upper hemispheric scanning capability
 - StreamLineXR same as StreamLine + 4X pulse energy + enhanced signal processor
 - StreamLinePro same as StreamLine but with reduced field-of-regard (±20° from zentih)
- Direct Measurements
 - Radial Velocity
 - SNR
- Derived Measurements
 - Attenuated backscatter
 - Winds
 - Vertical velocity statistics
 - Cloud base height and cloud base vertical velocity

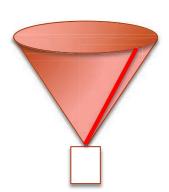
Doppler Lidar Network at SGP

Network of 5 Scanning Doppler lidars

SGP C1 installed April 2011

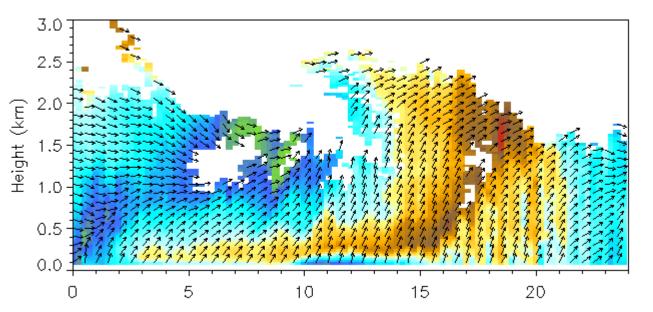
SGP E32, E37, E39, and E41 installed May 2016, (almost) in time for

Hiscale



Doppler lidar data products

- Staring data
 - datastream: dlfpt.b1
 - Usually vertical staring but could be slant path. End users should always check the "elevation" variable.
 - Used to derive vertical velocity statistics and cloud base height


- Conical Scan or plan position indicator (PPI)
 - datastream: dlppi.b1
 - 8 beams at elevation=60°
 - Once every 10 to 15 min,
 - Typically takes about 40 s to execute
 - used to derive winds

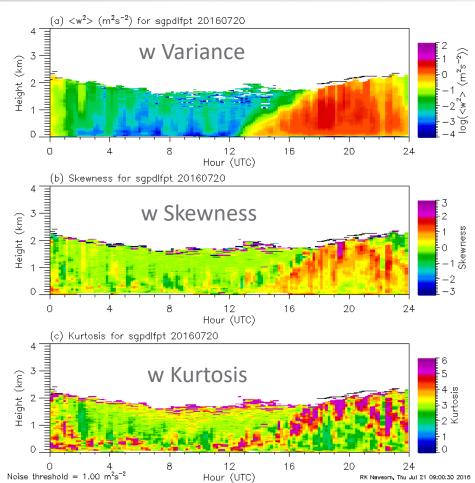
Pacific Northwest NATIONAL LABORATORY Proudly Operated by Battelle Since 1965

Doppler lidar Wind VAP

- Datastream: dlprof4windsnews.c1
- ▶ 40 s "snap shot" every 10 to 15 min, with $\Delta z=26$ m.
- Vertical coverage is typically <3 km</p>
- Includes MET data for sanity check
- End users should apply QC by rejecting wind estimates corresponding to low SNR
 - Typical SNR threshold = 0.008 to 0.01

30

25


. 20 05 1 Speed (ms⁻¹)

Doppler Lidar Vertical Velocity Statistics VAP

Proudly Operated by Baffelle Since 1965

Pacific Northwest

- Datastream: dlprof4wstatsnews.c1
- Vertical velocity variance, skewness, kurtosis, cloud base height, cloud base vertical velocity, cloud frequency
- ▶ Resolution: $\Delta t=30$ min and $\Delta z=30$ m.
- Vertical coverage is typically <3 km</p>
- Includes ECOR data for sanity check
- End users should apply QC by rejecting wind estimates corresponding to low SNR
 - Typical SNR threshold = 0.008 to 0.01

