Vertical Profiles of Trace Gas and Aerosol Properties over the Eastern North Atlantic

Washington University in St. Louis
Brookhaven National Laboratory
Pacific Northwest National Laboratory
Stony Brook University
Purdue University
University of Kansas
Argonne National Laboratory
University of Washington

*Contact information: jian@wustl.edu
Processes governing the aerosol properties at ENA

- Long-term ground observation at ENA
- Aerosols are governed by different processes at ENA
- Strong seasonal variabilities in aerosol population and controlling processes
- Lack of aircraft-based observations

Aerosol and Cloud Experiments in the Eastern North Atlantic (ACE-ENA)

- 2 intense operation periods (IOPs)
 - Early summer (June to July, IOP1) of 2017
 - Winter (January to February, IOP2) of 2018

- “L-shaped” flight pattern
- Vertical profiles of trace gas and aerosol properties
Cluster analysis of back trajectories during flight days

- MBL heights: 1220 ± 450 (IOP1) and 1640 ± 480 m (IOP2)
- 3 altitudes: 500 m, 1500 m, 3000 m

Gas species

- Water vapor (WV), carbon monoxide (CO), and ozone (O₃)

- Major sink of CO is OH radical
- Vertical trend:
 - Continental temperature
 - Vertical transport

Difference in ambient temperature and saturation vapor pressure
Gas species

- Water vapor (WV), carbon monoxide (CO), and ozone (O₃)

- Major sink of O₃ is the formation of OH during photolysis
Aerosol number concentrations and sizes

Higher total concentration in the FT

Dominated by Aitken-mode aerosols

Lower Accumulation-mode aerosol concentration in the FT

FT is unlikely the source of accumulation mode aerosols in the MBL
Aerosol number concentrations and sizes

- Smaller Aitken- and Accumulation-mode size in the FT (surface growth and in-cloud processing)
- Higher volatile fraction in the FT (influence of new particle formation)
Aerosol number concentrations and sizes

Seasonal variation: higher **summertime** concentration in all size ranges at all altitudes
- Influence of long-range transport and potentially stronger new particle formation

Summertime volatile fraction is lower than wintertime
Average aerosol size distributions

- Total aerosol concentration: higher in summer
- Large difference in Aitken-mode size
- New particle formation during winter
Aerosol chemical compositions

- Sulfate, organics, and ammonium constitute majority of non-refractory aerosol mass
- Higher sulfate concentration in the MBL
- BC concentration is higher in the FT (long-range transport)
 - Anthropogenic pollution or biomass burning aerosols?
Aerosol scattering properties

- Scattering coefficients at wavelengths of 700, 550, and 450 nm
 - Higher values in the MBL
 - Ångström exponent is lower at surface due to sea spray aerosols
Conclusions

- Vertical profiles of trace gas and aerosol properties
 - Higher CO and O$_3$ concentrations during winter due to reduced sink
 - Stronger influence of long-range transport during summer
 - Higher aerosol concentration during summer at all altitudes
 - Larger particle sizes due to stronger surface growth

Future plans:

- Identify the source of the long-range transport aerosols
 - Aerosol composition and back trajectories
- Impact of synoptic conditions on aerosol and trace gas properties

Thank you!