

CCN Activity and Hygroscopicity of Secondary Organic Material Scot T. Martin, Mikinori Kuwata, and Mackenzie L. Smith School of Engineering and Applied Sciences, Harvard University, Cambridge, MA (scot_martin@harvard.edu)

UV lights	

The chamber was operated under a condition of continuous flow. This feature was important for the study of atmospherically relevant concentrations (e.g., < 1ppbv α -pinene).

 κ values for α -pinene secondary organic Why? material decreased at elevated temperatures.

Oligomer formation in the organic material decreased κ , indicating aging effects on CCN activity. Materials at lower loadings were more oxidized.

Ref: Petters and Kreidenweis (2007) Ref: Shilling et al. (2008, 2009), Kuwata et al., in preparation

CCN mixing rules for organic-inorganic compositions

Theory

Gas-Phase Reaction Mechanism: Products

Model development		
$1 + \frac{S}{100} = \frac{d_{aq}^3 - d_{geo,dry}^3}{d_{aq}^3 - d_{geo,dry}^3 (1 - \sum_{k \in \{AS,o\}} d_{AS,o}^3)}$	$\frac{1}{rg} \varepsilon_k \kappa_k$	$xp\left(\frac{4\sigma V_{m,w}}{RTd_{aq}}\right)$
Parameters	Value	Unit
Surface tension, σ	0.0725	$N m^{-1}$
Effective molar volume, $V_{m, org}$	180	$cm^3 mol^{-1}$
Effective van't Hoff factor, i_{org}	1	
Effective soluble fraction, ω_{org}	1	

We could model the activation curves using a single set of parameters regardless of different organic mass fractions and reaction conditions. Generalization of this result makes the treatment of organic material in climate models more feasible.

Hygroscopicity parameter*, κ_{org} 0.10 Hygroscopicity parameter*, κ_{AS} 0.53

* $\kappa_{k} = \omega_{k} i_{k} (V_{m, org})^{-1} V_{m, W}$

Ref:King et al. (2007, 2009, and 2010)

March 2010

Conclusions

Thermodenuder experiments show that oligomer formation is responsible for the decrease in CCN activity. This magnitude depends on the O:C ratios.

CCN activity for organic-inorganic mixed particles is well predicted assuming a simple mixing rule and **κ~** 0.1.

The gas-phase reaction mechanism predicts that molecular weights of isoprene SOA compounds are smaller and hence more water soluble than those of α -pinene SOA compounds. Even so, κ values for

Hygroscopicity and phase transitions

particles of these materials are similar.

Secondary organic material produced from the dark ozonolysis of α -pinene minimally affects the DRH and ERH of ammonium sulfate.

References: S.M. King, S.T. Martin et al., Geophys. Res. Lett., 2007, 34, doi:10.1029/2007GL030390. S.M. King, S.T. Martin et al., Atmos. Chem. Phys., 2009,9, 2959-2972. S.M. King, S.T. Martin et al., Atmos. Chem. Phys., Discuss, 2010, 10, 213-244. J.E. Shilling, S.T. Martin et al., Atmos. Chem. Phys., 2008, 8, 2073-2088. J.E. Shilling, S.T. Martin et al., Atmos. Chem. Phys., 2009, 9, 771-782.

M. Kuwata, S. T. Martin et al., in preparation M. L. Smith, S. T. Martin et al., in preparation Saathoff et al., J. Aerosol Sci., 2003, 34, 1297-1321. Petters and Kreidenweis, Atmos. Chem. Phys., 2007, 7, 1961-1971. Takahama et al., Environ. Sci. Technol., 2007, 41, 2289-2295.