
Black Carbon Particle Measurement Studies

Summary and Outlook

Introduction

BC Particle Generation

BC Mass Specific Absorption

• Black Carbon (BC) particles 
- Absorb light efficiently, contributing to radiative forcing 
- Significant anthropogenic sources 

• BC particles generated by incomplete combustion 
- Inhomogeneous chemical compositions (including refractory and 

nonrefractory components) 
- Irregular shapes (agglomerates, mixed-phase)  
- Variable optical properties (scattering and absorption) 

• BC particles properties modified by atmospheric 
processes 

- Coatings of primary combustion products that may evaporate down 
wind of emission source 

- Secondary organic and inorganic condensates 
- Fates are not well known:  coagulation, CCN activity, deposition, etc. 

• Need for instrumentation capable of measuring the 
physical, optical, and chemical properties of BC particles 

- Variable BC properties complicate in situ measurement capabilities 
• This work focuses on experiments designed to 

characterize BC particle properties under controlled 
laboratory conditions and the intercomparion of current, 
state-of-the-art instrumentation for measuring BC particle 
properties 

- Morphological and optical changes of BC particles during 
coating/denuding experiments 

- Mass-based and optical-based instruments 
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Morphological Changes due to 
Coating/Denuding

Absorption Enhancement due to 
Nonabsorbing Coatings

Incandescence Signal of BC 
Particles with Coatings

BC Particle Types

BC Chemical Composition Issues

Liquid organic (bis-ethylhexyl sebecate) and inorganic (sulfuric acid) 
  coatings on BC particles reduce asphericity
Sulfuric acid coating/denuding (especially with RH) collapse BC 
  morphology
BES coating/denuding does not dramatically effect BC morphology
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SP2 incandescence signals are proportional to  BC particle mass 
  and insensitive to morphology and coatings
Three different SP2 instruments participated and exhibited similar 
  behavior, but with different sensitivities
Tested the detection limits for SP2 instruments to measure BC 
  particle mass

Mass-specific absorption coefficients (532 nm) for pre-mixed 
  ethylene flame BC particles measured to be 8.1±1.8 m2/g 
  with three different absorption instruments
Absorption enhancements observed for nonabsorbing organic 
  and inorganic coatings on flame generated BC particles
Flame generated BC particle morphology collapse during 
  coat/denude with sulfuric acid (especially with RH), but little 
  effect during coat/denude with BES
SP2 (three different instruments) incandescence signals 
  proportional to flame generated BC particle mass and 
  independent of morphology or coating
More controlled laboratory work is necessary to investigate 
  different BC particle types and their influence on our capability
  to accurately measure the physical, optical, and chemical
  properties of ambient BC particles
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Coating BC particles with nonabsorbing liquid organic or inorganic 
  material increases the mass specific absorption coefficient
Absorption enhancement increases with coating thickness to an 
  apparent asymptote or maximum around 2X the denuded absorption
Absorption enhancements are similar across a wavelength range 
  from 405-781 nm
Single scatter albedo measurements indicate that scattering due to 
  size increase for coated BC particles (100-200 nm) increases faster 
  than absorption enhancement effect (532 nm wavelength)

Denuded and coated/denuded pre-mixed flame BC particles exhibit 
  a consistent mass-specific absorption coefficient of 8.1±1.8 m2/g 
  at a wavelength of 532 nm
Three different absorption instruments participated (2 photoacoustic
  and 1 photo-thermal interferometer)

BC particles passing through a 1064 nm laser beam heat (up to their 
  boiling point), incandesce, and vaporize carbon clusters 
SP2 Incandescence signal intensities vary as a function of BC particle type
Vaporized carbon clusters distributions as measured by a SP-AMS 
  vary as a function of BC particle type
Complicates instrument calibrations and interpretations of ambient
  measurements


