

A 4-D Cloud Water Product from Operational Satellite Data

William L. Smith Jr.¹, Patrick Minnis¹, Mandana Khaiyer², Kris M. Bedka², Rabindra Palikonda², Douglas Spangenberg², and Yuhong Yi²

1) NASA Langley Research Center 2) Science Systems and Applications, Inc.

Т5

LaRC GOES

Conten

RMS (%)

Approach

- Develop Climatological Cloud Water Content Profiles (shape factors) from CloudSat RVOD product
- Develop technique to estimate cloud water content (CWC) profiles from Geostationary satellite data (4-D cloud water fields)

Goal

- Derive CWC profiles from geostationary satellite data over the ARM SGP
 high spatial and temporal resolution
 - shape factors constrained with GOES-derived cloud boundaries and cloud water path (CWP)

Mean Shape Factor

RC GOES

CWC

CLIMO

(z)

GDCF

(x,y,t)

Application to GOES for 4-D CWC Estimate Oct. 7, 2009 3-D GOES Derived Cloud Products (GDCP) (Cloud Top Height) Cloud Base Height

LaRC GOES

GOES Comparisons with CloudSat

Cross-sections along-track thru ARM SGP

Oct. 21, 2009 (20 UTC)

- doesn't provide the spatial and temporal resolution needed for direct use in many applications
- 4-D distribution of cloud water derived from operational weather satellites looks
 promising and could benefit a variety of weather related applications
- \bullet Instantaneous uncertainties are on the order of 25-50%, which is less than model uncertainties in many cases
- More work needed to improve technique, including refinements to climatology and improved screening of CloudSat data to account for retrieval uncertainties.
- Product could be used to test/improve cloud models on a regional scale.

Acknowledgements This research is supported by Interagency agreement, DE-AI02-07ER64546, between DOE and NASA Langley

References Smith Jr., W. L., P. Minnis, S. Benjamin, and S. Weygandt, "4-D cloud water content fields derived from operational satellite data." Submitted to Proc. of IEEE IGARSS, Honolulu, HA., July 25-30, 2010

Research Center Data were obtained from the Atmospheric Radiation Measurement (ARM) Program sponsored by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Climate and Environmental Sciences Division and from the CloudSat Data Processing Center

Minnis, P., S. Sun-Mack, D. F. Young, P. W. Heck, D. P. Garber, Y. Chen, D. A. Spangenberg, R. F. Arduini, Q. Z. Trepte, W. L. Smith, Jr., J. K. Ayers, S. C. Gibson, W. F. Miller, V. Chakrapani, Y. Takano, K.-N. Liou, and Y. Xie, "CERES Edition 2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data: Part1: Algorithms," *IEEE Trans. Geosci. Remote Sens.*, submitted, 2009.

Satellite derived cloud products are available from HTTP://WWW-PM.LARC.NASA.GOV