Testing cloud microphysics schemes in CAM5 **During M-PACE and ISDAC** Xiaohong Liu¹,S. Xie², J. Boyle², S. Klein², X. Shi¹, S. Ghan¹, P. DeMott³, A.J. Prenni³ ¹PNNL, ²LLNL, ³CSU (email: xiaohong.liu@pnl.gov)

Objectives

- Evaluate cloud microphysics schemes in NCAR **Community Atmospheric Model version 5 (CAM5)** with ARM M-PACE and ISDAC data
- Investigate effects of ice nuclei (IN) parameterization on mixed-phase clouds and climate forcing in CAM5

Conclusions

- CAM5 successfully reproduces mixed-phase cloud microphysics structures in the Arctic. Predicted liquid amount is too small and total ice amount is dominated by snow.
- IN number can significantly impact mixed-phase cloud microphysics, cloud radiative forcing and global climate.

M-PACE vs. ISDAC

- M-PACE: The ARM NSA Mixed-Phase Arctic Cloud **Experiment in October, 2004 (Arctic clean season)**
- ISDAC: Indirect and Semi-Direct Aerosol Campaign and ISDAC in April, 2008 (Arctic polluted season)
- ARM data: Cloud fraction ARSCL; Radar/lidar retrievals; in-situ aircraft

CAM5

- New Physics: MG cloud microphysics; PNNL modal aerosol module (MAM); UW shallow cumulus and cloud macrophysics; RRTM radiation.
- Test CAM5 (camdev32_cam3_6_57) under DOE **CCPP-ARM** Parameterization Testbed (CAPT) and under single column model (SCM)
- Test different IN parameterizations:
 - > Liu-CNTL: Meyers et al. (1992)'s
 - Liu-Phillips: Philips et al. (2008)'s
 - Liu-DeMott: DeMott et al. (2009)'s

(g/m3) 0.175-0 (g/m3) 0.002-0	.2 0.175-0.2	275 0.2-0.275	0.175±0.120; 0.154±0.116
(g/m3) 0.002-0	.01 0.002-0.0	0.001-0.0	04 0.015+0.032
			0.006 ± 0.002
. ⁻¹) 1-5	0.1-0.2	0.05	0.16 (CFDC)
m ⁻³) 30-50	30-50	30-50	30-40