Aerosol Composition, Chemistry, and Source Characterization during 2008 VOCALS

Y.-N. Lee¹, S. Springston¹, J. Jayne², J. Wang¹, G. Senum¹, J. Hubbe³, M. Alexander³, J. Brioude⁴, S. Spak⁵, M. Mena-Carrasco⁶, L. Kleinman¹, P. Daum¹ ¹Brookhaven National Laboratory; ²Aerodyne Research Inc.; ³Pacific Northwest National Laboratory; ⁴National Oceanographic and Atmospheric Administration; ⁵University of Iowa; ⁶Universidad Andrés Bello

Primary objective of VOCALS*:

To improve understanding of the southeastern Pacific coupled ocean-atmosphere-land system on diurnal to inter-annual timescales.

Location: Coastal marine atmospheres off northern Chile Time: October 15 to November 15, 2008

*VAMOS Ocean-Cloud-Atmosphere-Land Study

Why aerosol chemical composition Matters?

To understand aerosols regarding: Sources and formation pathways

- Optical properties
- Cloud nucleating properties
- Mixing state
- Cloud-aerosol interactions

Increased aerosol loading near the shore inferred from decreased cloud droplet effective radius based on satellite observations

Experimental Section:

Cloud and aerosol microphysical properties were characterized using instrumented DOE Gulfstream-1 (G-1) aircraft flying below-, in-, and above-clouds.

Findings:

Composition, Chemistry, and Mixing State:

- ✓ SO⁴² dominating, followed by NaCl, with NH⁴⁺, NO⁵ and organics each contributing only $\leq 10\%$
- Aerosol loading much higher in marine boundary layer (MBL)
- than in free troposphere, contrary to model predictions

✓ SO²⁻ of terrestrial origin as ocean-emitted dimethylsulfide (DMS) and its product, CH₃SO₃, were practically non-existent

 \checkmark SO₄²⁻ aerosols strongly acidic : (NH₄⁺/SO₄²⁻)_{ea} \sim 0.25; presence of H₃O⁺ verified by conductivity measurement

✓ Sea-salt and SO² aerosols externally mixed as NO² deposited on the former was detected by PILS, but not AMS

 \checkmark SO₄²⁻ aerosols well mixed in MBL, but not sea-salt particles, consistent with size and mixing state

Source Identification:

 Biogenic emissions dust

Terrestrial:

smelters

Less important:

•Agricultural activities

•power plants and urban emissions

Oceanic:

•sea-salt Unimportant: DMS chemistry

Atacama desert, devoid of biogenic activities

Model vs Observations:

Flexpart calculations driven by NCEP 0.5 x 0.5 deg met data with an up-to-date emission inventory for South America show underestimation of SO₄²⁻ in MBL near coast, and overestimation in free troposphere

Conclusions:

•Aerosols in marine atmospheres off northern Chile coast are dominated by anthropogenic sulfate and sea-salt particles •The particles are highly hygroscopic due to high sulfate, strong acidity, and low organics

•Enhanced aerosol direct effect is expected because of the large growth factors of H₂SO₄ and NaCl on RH

•Aerosol cloud nucleating properties are governed by size •Discrepancies between observed and predicted SO₄²⁻ aerosol concentrations need to be resolved

BROOKHAVEN

Acknowledgements: G-1 Chief pilot, Robert Hannigan, and crew. Supported by US DOE Atmospheric Science Program.