Comparison of Cloud Condensation Nuclei Activity of Secondary Organic Aerosols Derived from Hygroscopic Growth Factor And Direct **CCN Measurements**

M. Kulmala⁴, A. Laaksonnen⁵, D.R. Worsnop^{2,4,5}, and P. Davidovits¹

¹Department of Chemistry, Boston College, Chestnut Hill, MA, USA

²Aerodyne Research Inc., Billerica, MA, USA

³Dept. of Meteorology and Atmospheric Sciences, The Pennsylvania State University, University Park, PA. USA

⁴Division of Atmospheric Sciences, University of Helsinki, Helsinki, Finland UNIVERSITY OF EASTERN FINLAN

⁵Department of Physics, University of Kuopio, Kuopio, Finland

Introduction and Methods

• Hydroscopic growth factors (HGF) and cloud condensation nuclei (CCN) activity were measured for secondary organic aerosols (SOA) generated from a-pinene and m-xylene. These species were used as surrogates for gas-phase biogenic and anthropogenic emissions.

· Precursors were oxidized in a laboratory aerosol flow reactor as a function of OH radical concentrations varied from 4x10⁸ to 1x10¹⁰ molec cm-3.

Corresponding OH exposures ranged from 4.8x10¹⁰ to 1.2x10¹² molec cm⁻³ s, or 0.5-14 days' atmospheric exposure at an OH concentration of 1x10⁶ molec cm⁻³.

Figure 1. Experiment schematic showing aerosol flow reactor and particle characterization experiments. OH radicals were generated from the O(¹D) + H₂O reaction, with O(¹D) produced via O₃ photolysis and $\mathrm{H_{2}O}$ introduced by passing $\mathrm{N_{2}}$ through a humidifier. α -pinene or m-xvlene were introduced to the reactor using compressed gas mixtures in N2 and were regulated with a massflow controller. Particle physical and chemical properties were chacterized with an HTDMA, a Droplet Measurement Technologies CCN counter, and an Aerodyne ToF-AMS.

 An Aerodyne time-of-flight aerosol mass spectrometer measured aerosol chemical composition.

PENNSTATE

· A hygroscopic tandem differential mobility analyzer (HTDMA) measured growth factors by passing dry aerosols through water-humidified air (90% RH) and measuring the wet-todry particle diameter ratio.

A CCN instrument (Droplet Measurement Technologies) passed dry aerosols through water-humidified air (0.1-1% supersaturation) and measuring CCN with an optical particle counter.

Hygroscopic Growth Factor and CCN Measurements

Figure 2. HGF for SOA generated from α -pinene and m-xylene. As aerosol oxygen-to-carbon ratio increases from OH exposure, particles are proggressively more water-soluble and have higher HGF. Best-fit lines are added to guide the eye

Figures 3. Representative CCN activation curves for a-pinene SOA at different OH exposures. For a given supersaturation, a larger fraction of particles activate to form CCN at higher OH exposures. 50% of particles activate to form CCN at the critical supersaturation S

Figure 4. CCN-derived hygroscopicity paramter k (see Equation 1 below) for αpinene and m-xylene SOA. As aerosol oxygen-to-carbon ratio increases. surface tension decreases, enhancing CCN activity. Best-fit lines are added to quide the eve

Conclusions

• HGF and CCN activity for α pinene and m-xylene SOA increased with OH exposure and were linearly related to the aerosol oxygen:carbon ratio.

 HGF- and CCN-derived κ values were linearly related but in poor agreement.

HGF measurements at subsaturated conditions cannot reliably extrapolate CCN activity at supersaturated conditions.

Comparison of HGF- and CCN-Derived k

• For a given species, the hygroscopicity parameter κ (Petters and Kreidenweiss, 2007) relates dry particle diameter (D_d) to critical supersaturation and can be applied to direct CCN measurements made at supersaturated conditions:

$$CCN \quad \kappa = \frac{4A^3}{27D_d^3 \ln^2 S_c}; \qquad A = \frac{4\sigma_w M_w}{RT\rho_w} \qquad [1]$$

- Where $\sigma_{\rm w},~\rho_{\rm w},$ and ${\it M}_{\rm w}$ are the surface tension, density, and molecular weight of water. k can also be extrapolated from HGF measurements at subsaturated conditions (Petters and Kreidenweiss):

$$HGF \quad \kappa = 1 + \frac{1}{RH} \times \frac{HGF^3 - 1}{e^{\left(\frac{A}{D_d \times HGF}\right)}} - HGF^3 \qquad [2]$$

Figure 5. HGF- and CCN-derived κ for α pinene and m-xylene SOA.

Acknowledgements

This research was supported by the Office of Science (BER), Department of Energy (Atmospheric Science Program) grant No. DE-FG02-05ER63995 and the Atmospheric Chemistry Program of the National Science Foundation grants No. ATM-0525355 and ATM-0854916 to Boston College and Aerodyne Research, Inc.

References

Ehn, M., Petaja, T. et al. Atmos. Chem. Phys., 7, 211-222, 2007.

Petters, M.D. and Kreidenweis, S.M. Atmos. Chem. Phys., 7, 1961-1971, 2007.