# Towards ice formation closure in mixed-phase boundary layer clouds during ISDAC

A. Avramov<sup>1,2</sup>, A. S. Ackerman<sup>1</sup>, A. M. Fridlind<sup>1</sup>, B. van Diedenhoven<sup>1,2</sup>, A. V. Korolev<sup>3</sup>, W. Strapp<sup>3</sup>, A. Glen<sup>4</sup>, S.D. Brooks<sup>4</sup>, R. Jackson, G. McFarquhar<sup>5</sup> 1: NASA Goddard Institute for Space Studies 2: Columbia University 3: Environment Canada 4: Texas A&M University 5: University of Illinois-UC

**Contact:** aavramov@giss.nasa.gov

## **Objectives:**

Ice formation – can "conventional" ice nucleation mechanisms explain observed ice concentrations?

Use in-situ and radar observations to constrain model simulations

## Case description **April 8, 2008 – Flight 16**

 Single layer mixed-phase stratus cloud • Aircraft measurements taken near and over Barrow allow comparisons with ground-based remote sensing data • CPI images indicate predominance of dendritic ice shapes at all levels – most favorable case for "conventional" nucleation mechanisms (high IN concentrations, too)

| 1500<br>Hitinde <u>J</u><br>1000<br>500<br>0                                                                                                  | V        | ~_^^   | ~~~               | Mm |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|-------------------|----|--|
| 0.4<br>© 0.3<br>© 0.2<br>OM 0.1<br>0.0                                                                                                        | <u> </u> | Ait    |                   |    |  |
| 300<br><sup>•</sup><br>200<br><u>-</u><br>200<br><u>-</u><br><u>-</u><br><u>-</u><br><u>-</u><br><u>-</u><br><u>-</u><br><u>-</u><br><u>-</u> | <b>.</b> | A.     |                   |    |  |
| 0.10<br>0.08<br>0.06<br>0.04<br>0.02<br>0.00<br>•                                                                                             |          |        |                   |    |  |
| 3<br>1<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                             |          |        |                   |    |  |
| 25<br>20<br>15<br>15<br>N<br>10<br>N<br>20<br>20                                                                                              |          | ++<br> | 中<br>+<br>+<br>22 | 23 |  |

Time series of in-situ measurements

IWC derived from ice PSD and assumed M-D relation

• pristine dendrites do not provide good match with total ice water probe

 better match obtained if a gradual shift to aggregates at size 2-5 mm is assumed (1-4 mm, much better yet)



LAND MALL AND AND FRANK FRANKER 



layer ~  $10L^{-1}$ 

mean ice crystal concentrations ~ 1L<sup>-1</sup>

3.7-um radiances at 22.40Z with flight track overlaid

# mean IFN concentrations above cloud

0.05 B&F IWC [a.m<sup>-3</sup>] Vitchell P1c IWC





Representative CPI images (D~200 um)

# Model description and setup

3.2 x 3.2 x 1.5 km, doubly periodic BCs, 50 x 50 x 15 m uniform mesh

- LES code [Stevens and Bretherton, 1997]; dynamic Smagorinsky subgrid model [Kirkpatrick et al., 2006] • 2-stream radiative transfer, 44 wavelength bands [Toon et al., 1989]

- size resolving, bin scheme [Jensen et al., 1994; Ackerman et al., 1995; Fridlind et al., 2007] • diagnostic aerosols: 32 bins, D = 20 nm $-1 \mu m$
- prognostic IN: 10 activation bins
- liquid: 32 bins,  $D = 1.5 \mu m 2.8 mm$

Results

# 10L<sup>-1</sup> prognostic IN, dendritic habits: P1d (stellar crystal) and P1c (broad-armed dendrite)







## Summary

> 2D-C and 2D-P data and consistency check with Nevzorov IWC help to constrain habit and M-D relation choice. > Simulations using pristine dendrites provide very good match to MMCR Doppler velocities and acceptable agreement with measured ice concentrations. Simulated IWC and radar reflectivity, however, are too low. > Including second ice category of aggregates leads to better agreement with observations quantities. Further refinement is needed.

- fixed surface temperature, similarity sensible and latent heat fluxes
- large-scale subsidence from NCEP reanalysis

• ice: 32 bins, dendrites  $D_{max} = 2 \mu m - 9 cm$ , optional aggregates: 32 bins,  $D_{max} = 2 \mu m - 5 cm$ • also keeps track of aerosols embedded in drops and ice

• processes: drop activation, heterogeneous ice formation, sedimentation, collision-coalescence • ice fall speeds and collision-coalescence efficiencies based on mass, maximum dimension, projected area, and aspect ratio relations Mitchell [1996], [Böhm, 1989, 1992a-c, 1994, 1999, 2004]

• enhanced ice depositional growth (fixed shape factor S=0.6)

• ice number concentrations similar to observed (shown below)

• ice size distributions somewhat similar to observed

• simulated Doppler velocities show very good agreement with MMCR observations • but, simulated reflectivities ~ 10-15 dBz too low