

¹NASA/Goddard Space Flight Center ²Boston University ³University of Reading Certain algebraic combinations of single-scattering albedo and solar radiation reflected from, or transmitted through, clouds do not vary with wavelength Linear relationship between radiance to single scattering albedo ratio, $I(\Omega)/\omega_{0\lambda}$, $\omega = 1.0$ DISORT and radiance, $I(\Omega)$. calculations $\tau = 10; SZA = 60^{\circ}$ ω_=0.99 $\frac{I_{\lambda}(\Omega)}{I_{\lambda}} = pI_{\lambda}(\Omega) + R(\Omega)$ ω_=0.98 (*) $\omega_{0\lambda}$ ω_=0.96 $\omega_{2} = 0.95$ The slope *p* and the intercept $R(\Omega)$ are <u>spectrally invariant</u> recollision and escape probabilities, respectively. Nadir Radiance Schematic of radiative transfer process $T_{\rm dir}$ is the fraction of photons which reach the surface without $\sum_{n=1}^{\infty} \rho(\Omega)$ $\rho(\Omega)$ interacting. A fraction, $i_0=1-T_{dir}$, interacts with a cloudy atmosphere. With probability $\omega_{0\lambda}$ these photons are scattered and then either interact again (with probability p) or escape the atmosphere in $\omega_{0\lambda}$ direction Ω (with probability $R(\Omega) = \rho(\Omega)i_0$). non-reflecting surface **Under what conditions is Eq. (*) valid?** The extinction coefficient and the scattering phase function are wavelength independent! Is it true in real cloudy atmospheres? **Cloudy atmospheres: spectral variability of the extinction and scattering** 8.0 —total ⁄ >۲ 0.4 wavelength, λ (Spectra of *total* optical depth of a cloudy atmosphere and its constituents, air molecules, cloud droplets, aerosol particles and gases. AOD=0.2. Let Panel: Spectra for COD=0.5, 3 and 10. Right Panel: Zoom of spectra for COD=0.5. -----total_ωຼ; τ_=10 total_ ω_{0} ; $\tau_{c}=0.5$ 0.6 ──g_cloud ──g_aero ──g_Rayl ----total_g; τ_=0 ----total_g; τ_=3. ---total_g; τ_=10 0.5 wavelength, λ wavelength, $l(\mu m)$ Spectra of single scattering albed $\phi \omega_0$ 0.5, 3 and 10. A**⊉**D=0.2. three case as in left pane **Conditions for spectral-invariance are NOT met!** However in-cloud-dominaled Cloud optical Number of Total optical Standard Standard Total atmospheres the total wavelengths from deviation to mean depth, $\tau_{\rm C}$ depth, τ_{λ} deviation to mean asymmetry extinction and total scattering

phase tunction are paly

wavelerg

- - - - - - - -

leakly sensilive to 🗸

1.6 an

and a second a second a second

* For wavelengths between 0.7 and 2.5 µm

Spectrally-invariant approximations within atmospheric radiative transfer

Alexander Marshak¹, Yuri Knyazikhin², Christine Chiu³, Warren Wiscombe^{1,4}

⁴Brookhaven National Laboratory

Summary

For cloudy atmospheres with cloud optical depth above 3, and for spectral intervals that exclude strong water vapor absorption, the spectrally-invariant relationships are valid to better than 5%

- **Broadband calculations for climate models**
- Physical interpretation of SWS measurements
- Testing the consistency of remote sensing retrievals
- Filling missing spectral data
- Testing 3D radiative transfer codes

SBDART simulations confirm spectral invariance in cloudy atmospheres

Spectral scattering properties of cloudy atmospheres are fully determined by spectrally *variable* single scattering albedo $\omega_{0\lambda}$ and spectrally *invariant* recollision probability p

