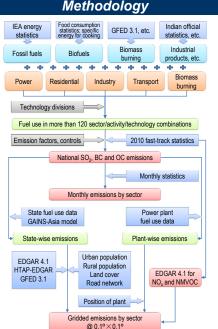


An Inventory of Gaseous and Primary Carbonaceous Aerosol Emissions from India for the Ganges Valley Aerosol Experiment (GVAX)

Zifeng Lu¹, David G. Streets¹, V. Rao Kotamarthi²

500 1000

¹ Decision and Information Sciences Division, ² Environmental Science Division Argonne National Laboratory, Argonne, IL 60439


Background & Objectives

Background

- · India is undergoing rapid industrialization.
- · High aerosol concentrations and AOD values have been observed, as indicated by both ground- and satellite-based measurements.
- · Aerosols are high in sulfate, nitrate, BC, and OC and are mostly from anthropogenic emissions.
- · Increasing emissions have modified the regional climate through the direct and indirect radiative effects of aerosols.
- · Energy consumption has increased substantially since 1990. However, few works estimate recent-year emissions.

Objectives

- Develop a new inventory of gaseous (SO₂, NO₂, and NMVOC) and primary carbonaceous aerosol (BC and OC) emissions from India in 2010
- Support the GVAX campaign, which is designed to characterize aerosols, regional transport, and cloud-aerosol interactions in the Ganges Valley region of India.

- SO₂, BC and OC:
 - Emissions are estimated for 2008 by using a detailed technology-based methodology and extrapolated to 2010 based on fast-track statistics.
- NO_x, NMVOC:
- Based on EDGAR4.1 and scaled to the year 2010.
- Probability distributions are assumed for all the input parameters. and Monte Carlo simulations are used to analyze the emission uncertainties

SO₂, BC and OC Emissions

Emissions overview

SO ₂ , BC and OC emissions from India in 2010 (Unit: Gg/yr)					
	SO ₂	BC	OC		
Power generation	5236	5	14		
	(-18%~19%)	(-83%~187%)	(-90%~234%)		
Industry	2784	227	214		
	(-26%~28%)	(-57%~127%)	(-60%~118%)		
Domestic	583	579	1946		
	(-38%~47%)	(-60%~133%)	(-58%~129%)		
Transportation	144	111	54		
	(-17%~17%)	(-40%~53%)	(-36%~49%)		
Subtotal	8747	922	2228		
	(-17%~17%)	(-45%~88%)	(-51%~113%)		
Forest & savanna burning	17	19	157		
	(-54%~67%)	(-49%~82%)	(-41%~57%)		
Agricultural waste burning	44	74	354		
	(-87%~113%)	(-47%~64%)	(-61%~107%)		
Total	8807	1015	2739		
	(-16%~17%)	(-41%~80%)	(-44%~92%)		
* The values in the parentheses indicate the 95% CI around the mean.					

)	NA NA RA	NAC NAC		
,	60'E 70'E 60 SO2		60'E 70'E 80'E 90'E BC	60'E 70'E 80'E 90'E OC
)	H.P. N.R.	N N N N N N N N N N N N N N N N N N N		SO ₂ , BC, & OC: up-to-date surrogates
,	N NR	z z		NO _x , NMVOC: EDGAR4.1
)		Z NE		Surrounding parts: EDGAR4.1 HTAP-EDGAR
)	NO		NMVOC	

Seasonality of Emissions

Gridded Emissions @ 0.1 °×0.1 °

Conclusions

- SO₂, BC, and OC emissions for India in 2010 are 8.81 Tg, 1.02 Tg, and 2.74 Tg, respectively, and the 95% confidence intervals for these estimates are -16% to 17% for SO2, -41% to 80% for BC, and -44% to 92% for OC.
- Coal-fired power plants and traditional cookstoves are the main sources of SO₂ and carbonaceous aerosols, respectively.
- The major contributors to emissions uncertainty in India are coal sulfur content for SO₂ (60%) and fuelwood emission factors of traditional cookstoves for BC (56%) and OC (65%)

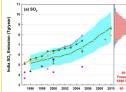
References

- Bond, T. C., D. G. Streets, et al. (2004), A technology-based global inventory of black and organic carbon emissions from combustion, J Geophys Res, 109, D14203.
- Habib, G., C. Venkataraman, et al. (2004). New methodology for estimating biofuel consumption for cooking: Atmospheric emissions of black carbon and sulfur dioxide from India, Global Biogeochem Cy, 18, GB3007.
- Klimont, Z., J. Cofala, et al. (2009). Projections of SO₂, NO₄ and carbonaceous aerosols emissions in Asia, Tellus Ser B-Chem Phys Meteorol, 61, 602-617.
- Streets. D. G., T. C. Bond, et al. (2003), An inventory of gaseous and primary aerosol emissions in Asia in the year 2000, J Geophys Res, 108(D21), 23, 8809.
- van der Werf, G. R., J. T. Randerson, et al. (2010). Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009), Atmos Chem Phys. 10, 11707-11735.

Acknowledgments

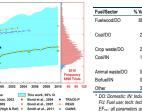
This work is supported by the Office of Biological and Environmental Research in the U.S. Department of Energy, Office of Science.

The 2nd Science Team Meeting of the Atmospheric System Research Program San Antonio, Texas, March 28-April 1, 2011



Comparison with previous work

(b) BC


(c) O(

BC ndia E

Othe 5.4%

HTAP-EDGA

EFer: all parameters associated with BC emission factor ve) fire)

EFoc: all parameters associated with OC emission factor

Largest contributors to emission uncertainties Fuel/Secto % Variance Contributo Hard coa 60.3% Hard coal 28.5% FU 3.3% SR Hard coal 2.7% SC. FU. SR Brown coal Heavy fuel oi 2.2% SC, FU

0.7% SC, FU Industrial pr 0.3% Production, EFso. Other 1.9% * SC: Sulfur content; FU: Fuel use; SR: Sulfur EF_{SD2}; SO₂ emission factor.

	Fuel/Sector	% Variance	Contributors
	Fuelwood/DO	63.3%	FU, tech, EF _{BC} (cook/heating stove)
	Coal/IN	14.1%	FU, tech, EF _{BC} (brick kiln, stoker)
	Coal/DO	11.8%	FU, EF _{BC} (cookstove)
-	Crop waste/DO	1.8%	FU, EF _{BC}
1	Animal waste/DO	1.6%	FU, EF _{BC}
2010	Diesel/TR	1.0%	FU, tech, EF _{BC} (superemitter, normal)
Frequency 6595 Trials	Coke making/IN	0.9%	FU, tech, EF _{RC} (uncaptured)

* DO: Domestic; IN: Industry; TR: Transport FU: Fuel use; tech: technology divisions;

	Fuel/Sector	% Variance	Contributors
	Fuelwood/DO	88.5%	FU, tech, EF _{OC} (cook/heating stove
1	Coal/DO	2.8%	FU, tech, EF _{oc} (cookstove, open fi
	Crop waste/DO	2.6%	FU, EF _{oc}
-	Coal/IN	1.6%	FU, tech, EF _{oc} (brick kiln, boiler)
2010 Frequency	Animal waste/DO	0.7%	FU, EF _{oc}
6596 Trials	Biofuel/IN	0.2%	EFoc
10 40 80 120	Other	3.6%	
TRACE-P	* DO: Domestic; II FU: Fuel use; teo		