Aerosol Optical and Microphysical Properties from Passive Remote Sensing during CARES: Temporal and Spatial Changes E. Kassianov<sup>1</sup>, J.Barnard<sup>1</sup>, M.Pekour<sup>1</sup>, C.Flynn<sup>1</sup>, R.Ferrare<sup>2</sup>, C.Hostetler<sup>2</sup>, J.Hair<sup>2</sup>

<sup>1</sup>Pacific Northwest National Laboratory, <sup>2</sup>NASA Langley Research Center



### 1. Motivation

Recently conducted <u>Carbonaceous Aerosol</u> and <u>Radiative Effects Study (CARES)</u> includes retrievals of aerosol size distribution and optical properties, such as column aerosol optical depth (AOD), single-scattering albedo (SSA), asymmetry parameter (ASP).



### 4. Summary

✓ Remote sensing data (MFRSR, AERONET) capture large spatial, diurnal and day-today variations of aerosol properties. For example, wide ranges of daily-averaged AOD (0.05 - 0.15) and SSA (0.80 - 0.98) values at 500 nm are observed.

✓ How large are <u>temporal/spatial</u> variations of aerosol optical properties?

✓ How large is contribution of <u>coarse</u> mode to these properties?

**T0: MFRSR-derived Optical Properties** 

Fig.1 Two-dimensional HSRL-based images of aerosol extinction coefficient at 532 nm





✓ The <u>coarse</u> mode is sometimes so large that it may exert a powerful influence on aerosol optical properties. On average (over CARES campaign), coarse mode contributes noticeably (~ 20%) to these properties.



There are large <u>day-to-day</u> variations of aerosol optical properties: AOD (<u>0.05 - 0.15</u>) and SSA (<u>0.80 - 0.98</u>)

# $\int_{0}^{\infty} u^{15} + Time (LST) + 0.08 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.10 + 0.1$

**Fig.3** *Column* MFRSR- and AERONET-based (top), and *surface* **APS**-based (bottom) size distributions

For a given day / time, contribution of
<u>coarse</u> mode to size distributions is <u>large</u>

### **AERONET & MFRSR: AOD**



**Fig.4** Variability of daily-averaged MFRSR-based optical properties obtained for **Fine** (dotted) and **Total** = **Fine** + **Coarse** (solid) modes

 Contribution of <u>coarse</u> mode\_to aerosol optical properties can be large (~ <u>20</u>% over CARES campaign)

## 3. Coarse Mode

✓ Illustrate *evidence* of large <u>coarse</u> mode using (a) size distributions from MFRSR, AERONET, APS (Fig. 3), (b) aerosol properties from in situ data for single mode (<1  $\mu$ m) and two modes (<10  $\mu$ m) (not shown).

✓ Estimate *importance* of <u>coarse</u> mode

# 2. Approach

✓ Apply MFRSR retrieval [1] to obtain aerosol optical properties (Figs. 2,4), size distribution (e.g., Fig. 3) for two sites (T0 and T1).

✓ Compare MFRSR-retrieved aerosol properties with those provided by AERONET (Figs. 3,5), and independent measurements, such as by <u>Aerodynamic Particle Sizer (APS) (Fig.3).</u>

✓Perform *radiative closure* using retrieved MFRSR optical properties and measured broadband total fluxes at surface (not shown).

**Fig.5** Scatterplot for AOD values (500 nm) obtained from MFRSR and AERONET

calculating aerosol optical properties (Figs. 2,4) for single mode (Fine) and two modes (Total). ✓ Apply these aerosol properties to calculate the corresponding aerosol Direct Radiative Forcings (Fine, Total) at the TOA (not shown).

