Airborne High Spectral Resolution Lidar Aerosol Measurements During CalNex and CARES

Chris Hostetler1, Richard Ferrare2, John Hair2, Anthony Cook1, David Harper1, Sharon Burton2, Mike Obland1, Ray Rogers1, Carolyn Butler2, Amy Swanson2, Jerome Fast3, James Bernard4, Evgenii Kassianov5, Brent Holben4, Stephen Springston5

1NASA Langley Research Center, Hampton, VA, USA 2Science Systems and Applications, Inc., Hampton, VA, USA 3Pacific Northwest National Laboratory, Richland, WA, USA 4NASA Goddard Space Flight Center, Greenbelt, MD, USA 5Brookhaven National Laboratory, Upton, NY, USA

Background

The NASA Langley Research Center (LaRC) airborne High Spectral Resolution Lidar (HSRL) on board the NASA B200 aircraft measured aerosol extinction (532 nm), aerosol optical thickness (AOT), backscatter (532 and 1064 nm) and depolarization (532 and 1064 nm) profiles during the 2010 CalNex and CARES field missions. The HSRL data were acquired to characterize the vertical and horizontal distribution of aerosols during these missions. The B200 flights were conducted so that the NOAA WP-3, NOAA twin Otter, CIRPAS twin Otter, and DOE G-1 aircraft often collected coincident data within the HSRL “curtain” such that the HSRL could provide the vertical context for the airborne in situ measurements acquired from these other aircraft. HSRL data have been used to infer aerosol types and mixtures of those types, and apportion aerosol optical thickness to these types. HSRL measurements are also used to determine Planetary Boundary Layer (PBL) height and investigate the variability of PBL height.

CalNex - HSRL Measurements over Los Angeles on May 19, 2010

Aerosol Backscatter (532 nm)

Aerosol Optical Thickness (532 nm)

Planetary Boundary Layer (PBL) Height Retrievals – HSRL Retrievals and WRF-Chem Model

June 8, 2010 Flight #1

HSRL and WRF-Chem PBL heights are in reasonably good agreement (within ~ 50 m) during the local afternoon. HSRL PBL heights were generally larger by 100-200 m during the morning which may be due to limitations of the HSRL wavelet based analysis for low PBL heights and also to the difference in how the PBL height is determined (HSRL uses aerosol gradient, WRF-Chem uses temperature gradient).

CalNex Deployment May 2010

• Ontario, California
 • May 13-25
 • 8 science flights (~29.5 hours)
 • 6 with CIRPAS Twin Otter
 • 2 with NOAA P-3
 • 6 with MODIS and/or MISR

CARES Deployment June 2010

• Sacramento, California
 • June 3 - 28
 • 23 science flights (~68 hours)
 • 19 with DOE G1
 • 1 with NOAA AVS Atlantis
 • 2 with NOAA P3
 • 6 with NOAA Twin Otter
 • 11 with MODIS and/or MISR

• Instruments deployed for CalNex and CARES
 – High Spectral Resolution Lidar (HSRL) (NASA/LaRC)
 – Research Scanning Polarimeter (RSP) (NASA/GISS)

Inference of Aerosol Type and Apportionment of Aerosol Optical Thickness to Aerosol Type

Aerosol Classification using HSRL measurements

• Uses four aerosol intensive parameters to classify aerosols
• Computes Mahalanobis distance to sort points into classes
• Employs a training set of known types comprised of 29 labeled samples (over 26000 points, about 0.3% of all data)
• Estimates the 4-D normal distributions of classes from labeled data, then calculates Mahalanobis distance from each point to each class
• HSRL data acquired from 2006-2010 are classified

Aerosol Types Inferred from HSRL data June 19th

• HSRL aerosol measurements for aerosol type, aerosol type varied
 – Dusty Mix
 – Aerosol types varied between Sacramento and mountains

HSRL, AERONET, and MFRSR AOT

• HSRL, AERONET, and MFRSR AOT retrievals are generally in good agreement (rms and bias differences < 0.02, <30%)

HSRL and G-1 In situ Aerosol Extinction

• HSRL aerosol extinction measurements are about 10-25 Mm⁻¹ (40-80%) higher than aerosol extinction derived from G-1 in situ measurements. Differences are smaller during days with larger fine mode AOT fraction.

CARES – June 28, 2010

Airborne HSRL and G-1 Measurements of Aerosol Extinction in Sacramento Plume

• HSRL measurements used to help identify plume location
• Increase in aerosol extinction and AOT downwind of Sacramento
• Provide vertical context for G-1 measurements
• G-1 preliminary aerosol extinction (Neph + PSAP)

Acknowledgements

We thank the NASA Langley B200 King Air flight crew for their outstanding work supporting these flights and measurements. Support for the HSRL and analyses was provided by the DOE ASR program, Interagency Agreement No. DE-A102-05ER63985, the NASA Science Mission Directorate, and the NASA CALIPSO project.