Observations of Aerosol Effects on the Microphysics and Radiative Properties of Arctic Liquid-Phase Clouds

Michael E. Earle¹, Peter S.K. Liu¹, J. Walter Strapp¹, Alla Zelenyuk², Dan Imre³, Greg M. McFarquhar⁴, Nicole C. Shantz¹, W. Richard Leaitch¹, Mikhail Ovchinnikov², and Steven J. Ghan²

Environnement

Canada

Environment

Canada

¹ Environment Canada, ² Pacific Northwest National Laboratory, ³ Imre Consulting, ⁴ University of Illinois

Overview

- Aerosol indirect effects
 - Key climate system process; uncertainty
 - Requirement for studies in Arctic
- Indirect and Semi-Direct Aerosol Campaign (ISDAC)
 - Barrow, Alaska April 2008

Approach

- Focus on liquid-phase stratocumulus
- April 8, 26, 27: clean aerosol conditions
- April 19, 20: biomass burning (BB)
- In-situ observations
 - In-cloud: droplet concentration, size (CDP, FSSP-100); liquid water (King probe)
 - Below-cloud: aerosol particle concentration, size (PCASP, FSSP-300), single particle composition (SPLAT II)

Part 1: cloud microphysical and radiative properties

 Vertical profiles; porpoising legs

Part 2: cloud droplet activation

 Horizontal leas inand below-cloud Droplet closure analysis

Part 1: Average Cloud Properties

Two distinct aerosol-cloud	Parameter	Clean	Polluted
 regimes Higher Re. LWP. albedo 	Aerosol concentration, N_{a} [cm ⁻³]	147 ± 41	756 ± 132
for clouds in more polluted	Droplet concentration, <i>N</i> _d [cm ⁻³]	136 ± 31	304 ± 81
	Activated fraction	0.96	0.41
√ 1000 ▲ -	Temperature, T[°C]	-12.9 ± 1.1	-7.5 ± 1.1
	Liquid water content, LWC [g m ⁻³]	0.07 ± 0.02	0.16 ± 0.11
	Cloud thickness, $H_{\rm c}$ [m]	180 ± 43	296 ± 64
	Liquid water path, <i>LWP</i> [g m ⁻²]	13.4 ± 6.1	61.9 ± 66.8
200 200 Clean cases	Droplet effective radius, <i>Re</i> [µm]	5.4 ± 0.7	5.7 ± 1.2
Polluted cases	Cloud optical thickness, τ	3.60 ± 0.30	14.13 ± 13.6
50 100 150 200 Liquid water path, <i>LWP</i> [g m ⁻²]	Cloud albedo, A	0.34 ± 0.08	0.55 ± 0.25
Figure 1: Aerosol concentration vs. liquid water path for all profiles.	Fable 1: Average cloud and aerosol p all profiles under clean and polluted a	arameters and stan erosol conditions.	dard deviations fo

all profiles under clean and polluted aerosol conditions.

Acknowledgement: This research was supported by the Office of Science (BER), US Department of Energy, Grant No. DE-FG02-09ER64768.

Part 1: Insight into Indirect Effects

- For comparable LWP: larger optical depth, smaller Re for polluted cases
 - Consistent with 1st indirect effect
- Precipitation inhibition: Re below ~ 10 µm (drizzle threshold) for all profiles
 - 2nd indirect effect
 - Clean cases: low LWC limits droplet growth
 - Polluted cases: high N_d limits droplet growth

Differences in size, composition

Simulate activation in adiabatic

Updraft velocity from standard

deviation of vertical velocity

 Minimize difference between measured and simulated $N_{\rm d}$

Polluted case: more sensitive to

 Lower activated fraction, lower maximum supersaturation Preferential activation of larger or more hygroscopic particles Different particle sizes activated in each aerosol-cloud regime

measurements in-cloud,

of below-cloud aerosol

parcel model

updraft velocity

Implications for Re

Part 2: Aerosol Properties and Droplet Closure

Case	Hygroscopicity	Updraft velocity cm s ⁻¹	% Difference N _d
Clean	0.3	0.6 – 1	8 %
Polluted	0.3	0.5	3 %

Table 2: Parcel model simulation results. All simulations assume an internallymixed aerosol and condensation coefficient of 1

Summary and Future Work

- Two distinct aerosol-cloud regimes observed in Arctic springtime clouds (liquid-phase)
- Assessment of indirect effects complicated by variations in LWP, droplet activation
- Precipitation suppression (2nd indirect effect) observed in both clean and polluted cases
- Future Work: extend analysis to additional cases; incorporate updrafts from LES