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Why Particle-Resolved Aerosol Models?

Individual aerosol particles are a complex mixture of a wide variety of species, such as soluble

inorganic salts and acids, insoluble crustal materials, trace metals, and carbonaceous materials,

requiring a high-dimensional representation. The capabilities of traditional models to treat this

high dimensionality are currently limited, and this introduces shortcomings in our understanding

of the impact of aerosol particles on climate. To improve this we have recently introduced

the particle-resolved model PartMC-MOSAIC [Riemer et al., 2009, Zaveri et al., 2008], a new

approach to examining the evolution of aerosol properties without making a priori assumptions

about the evolution of particle composition.

Capabilities of PartMC-MOSAIC

The stochastic particle-resolved aerosol model PartMC tracks the chemical composition of indi-

vidual aerosol particles in a Lagrangian box. Particle emissions, dilution with the background,

and Brownian coagulation are simulated stochastically by generating a realization of a Poisson

process. Gas- and aerosol-phase chemistry is implemented deterministically by coupling with

the MOSAIC chemistry code. PartMC-MOSAIC accurately predicts both number and mass size

distributions and is therefore suited for applications where either quantity is required. Figure 1

shows an example of the model output of black carbon mixing state and the corresponding critical

supersaturation as two-dimensional projections of the 20-dimensional number distribution.
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Figure 1: Two-dimensional projections of the 20-dimensional number distribution after 7 hours of

simulation. Left: Black carbon mixing state. A continuum of mixing states formed between the extreme

mixing states of wBC,dry = 0% (particles that do not contain BC) and wBC,dry = 70% (freshly emitted

diesel particles) as a result of coagulation and condensation processes. At a given size, a wide range of

particles exists with different mixing states. Right: critical supersaturation. Given a certain particle size,

the critical supersaturation ranges over about one order of magnitude.

The Path For Going Beyond The Box

While particle-resolved aerosol simulations offer unprecedented resolution of the aerosol mixing

state, they are significantly more expensive than conventional models. Here we explore strategies

to improve the efficiency of PartMC-MOSAIC to enable its extension from a Lagrangian box

model to a model that is coupled to a 1D (and eventually 3D) transport code. We focus on

two specific aspects: (1) a new algorithm for parallel simulation, and (2) “superparticles” as a

coarse-graining method, with each superparticle representing a collection of physical particles.

Parallel Simulation via Mixing

We have developed a new parallel simulation algorithm for the box-model PartMC method. This

consists of having several processor cores timestep independent parallel simulations (denoted

Φ
para
∆t ), combined with mixing particles randomly between the different processors at each time-

step (denoted Φmix
p ), where, with probability p, each particle is transferred to a different randomly

chosen processor at the end of a timestep. Using Φproj for the projection of all particles to a

single core, and Φcent
∆t for the centralized (single core) simulation algorithm, we prove that this

method is weakly convergent at rate O(
√

∆t):

Φproj ◦
(

Φmix
p ◦ Φ

para
∆t

)T/∆t
⇀ Φcent

T ◦ Φproj as ∆t→ 0 for p > 0.

As we see from the numerical results in Figure 2, when the mixing rate is zero (p = 0), the

simulation displays some inaccuracies. Even small mixing probabilities (p = 0.01), however,

accurately capture the system evolution. This is quantified in Figure 3, where we see that as

the number of processor cores increases the zero mixing solution fails to converge correctly, while

even small mixing rates ensure the expected N−1/2 convergence rate. Here the total number of

particles N is proportional to the number of cores, as we hold constant the particles per core.

Regarding scalability, we see that we are about 25% slower than ideal up to hundreds of cores.
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Figure 2: Mixing-based parallel particle code results. Left: parallel simulation with 512 processor cores

and 32 particles per core (16 384 particles total), and no mixing (p = 0). Center: the same parallel

simulation but with a small amount of mixing (p = 0.01). Right: A benchmark comparison calculation

with 105 particles on a single processor core. We observe that even small amounts of mixing are enough

for the parallel simulation to accurately resolve the particle population evolution.
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Figure 3: Convergence and speedup for parallel code. Left: simulation error versus number of cores.

Right: simulation speedup factor versus number of cores. In both cases a constant number of particles

per core is used (32 on the left, 1024 on the right). We see that small mixing rates (p = 0.01) are

sufficient to achieve good error convergence (left) while having speedup only about 25% less than ideal

(right).

Superparticles

A direct particle-resolved method in which one represents each “physical” particle by a single

“computational” particle tends to have the following difficulty: either the population of large

particles is under-resolved and the accuracy of the simulation is significantly compromised, or

the total number of particles in the entire simulation must be very large. The superparticle

method allows coarse-graining where each “superparticle” in our new scheme represents a family

of identical particles. This means that each computational particle is “weighted” by an appropriate

factor so that the true number distribution n(D) is given by n(D) = w(D)c(D), where w(D) is

a fixed weighting function, c(D) is the computational (simulated) number distribution, and D is

the diameter. Such an efficiency increase moves certain problems into the realm of tractability,

as demonstrated with the example of new particle formation by nucleation (Figure 4).
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Figure 4: Temporal development of an aerosol particle size distribution after a nucleation burst. Left:

weighting factor w(D) = 1. Right: weighting factor w(D) = D−1. The superparticle method ensures

that the whole range of sizes—from a few nanometers for the freshly nucleated particles to micrometers

for the background particles—can be resolved with practical levels of computation.

Conclusion

Particle-resolved aerosol models represent a new way of simulating multidimensional aerosol size

distributions. They do not rely on ad hoc assumptions regarding the aerosol mixing state. These

capabilities come with high computational costs. Here we show two paths for improving the

efficiency of such models:

1. Parallel Simulation via Mixing: The particle population is distributed over several processors.

At each timestep processors simulate independently, then exchange particles with a given

probability. We showed that this algorithm converges and scales near-linearly up to hundreds

of cores.

2. Superparticle Method: This allows coarse-graining where each “superparticle” in our new

scheme represents a family of identical physical particles. This method is useful for applications

where different types of particles need to be tracked that have very disparate concentrations.
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