Effects of aerosols on shallow cumuli sampled during RACORO

Hee-Jung Yang ${ }^{1}$, Greg M. McFarquhar ${ }^{1}$, Haf Jonsson ${ }^{\mathbf{2}}$
Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign ${ }^{2}$ Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS), Naval Postgraduate School

1. Introduction

* Classical Second aerosol indirect effect (Albrecht, 1989)

2. Field Experiment: RACORO

* Routine AAF Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO)
\checkmark Where: in the vicinity of the ACRF SGP site, OK
\checkmark When: from January to June 2009
\checkmark What: Routine measurements of aerosol, cloud, and radiative properties
\checkmark Data: 260 hours flight time
=> 85 hours of shallow cumuli conditions => 2,337 cumuli sampled

Fig 1. Typical flight pattern flown by CIRPAS
Twin Otter during RACORO. Twin Otter during RACORO.
3. RACORO Cumulus Statistics

* Schematic plot: How to define individual cloud

Fig 3. Schematic plot of RACORO cloud criteria.
*Cloud Macro- / Micro- physical properties Statistics

Fig 4. Histograms of mean properties of the cumuli .

4. Aerosol - Cloud Interactions

* As aerosol concentration (PCASP) increases, LWC decreases.

Fig 5. The cloud averaged Nd, LWC, and reff as a function of PCASP concentration.

* Vertical velocity inside clouds can answer this.

Fig 6. (a) comparison of cloud mean updraft and max updraft in cloud, (b) vertical velocity as a function of PCASP conc.

5. Conclusion

\checkmark LWC decreases as PCASP concentration increases, different from classical $2^{\text {nd }}$ indirect effect.
\checkmark Decrease in LWC explained by decrease in vertical velocity inside clouds as PCASP concentration increases.
$\checkmark R_{\text {eff }}$ decreases as PCASP concentration increases.

