Effects of aerosols on shallow cumuli sampled during RACORO

Hee-Jung Yang¹, Greg M. McFarquhar¹, Haf Jonsson²

¹Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign ²Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS), Naval Postgraduate School

1. Introduction

Classical Second aerosol indirect effect (Albrecht, 1989)

2. Field Experiment: RACORO

Routine AAF Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO)

- ✓ Where: in the vicinity of the ACRF SGP site, OK
- ✓ When: from January to June 2009
- ✓ What: Routine measurements of aerosol, cloud , and radiative properties

✓ Data: 260 hours flight time => 85 hours of shallow cumuli conditions => 2,337 cumuli sampled

Twin Otter during RACORO.

ARSCL, overlapped with FSSP measurement.

3. RACORO Cumulus Statistics

Schematic plot: How to define individual cloud

Fig 3. Schematic plot of RACORO cloud criteria.

Cloud Macro- / Micro- physical properties Statistics

Fig 4. Histograms of mean properties of the cumuli .

4. Aerosol – Cloud Interactions

✤ As aerosol concentration (PCASP) increases, LWC decreases.

Fig 5. The cloud averaged Nd, LWC, and reff as a function of PCASP concentration.

Vertical velocity inside clouds can answer this.

(b) vertical velocity as a function of PCASP conc.

5. Conclusion

- ✓ LWC decreases as PCASP concentration increases, different from classical 2nd indirect effect.
- ✓ Decrease in LWC explained by decrease in vertical velocity inside clouds as PCASP concentration increases.
- ✓ R_{eff} decreases as PCASP concentration increases.