Radiative Cloud Forcing Over Darwin Using Inputs from Multiple Ground-based and Satellite Remote Sensors

Introduction

- ► The vertical distribution of radiative heating plays an important role in determining dynamic atmospheric processes. An accurate representation of heating rates in the atmosphere is limited by our ability to describe the thermodynamic state and cloud properties of the atmosphere.
- Observations from multiple remote sensing instruments are required to obtain a comprehensive view of clouds.
- Using observations from the A-train satellite constellation allows for a near-global set of radiative heating profiles.
- Comparisons to radiative heating rate profiles derived from ARM observations provide insight into the advantages and disadvantages present in each data set and provide guidance on how such data sets might be improved.

Tyler Thorsen¹, Qiang Fu¹ and Jennifer Comstock² ¹Department of Atmospheric Sciences, University of Washington

²Pacific Northwest National Laboratory

Datasets

Satellite: CCCM

- ► CALIPSO-CloudSat-CERES-MODIS (Kato et al., JGR, 2010). Integrates observations from level 2 CALIPSO/CloudSat products:
- CALIPSO: VFM / 05kmCLay / 05kmCPro
- CloudSat: CLDCLASS / CWC-RO
- ► MODIS retrievals done by CERES cloud algorithm. Optical
- depth used to scale extinction profile.
- Cloud detected by:
- ▷ CALIPSO: CALIPSO β + MODIS $R_e \rightarrow IWC/LWC$
- \triangleright CloudSat: CloudSat *IWC/LWC* + CloudSat $R_e \rightarrow \beta$
- ▷ Both: CALIPSO β + CloudSat $R_e \rightarrow IWC/LWC$

ARM: COMBRET

- ► PNNL combined retrieval: MMCR + MPL + MWR ▶ Phase: Shupe, *GRL* (2007) ► *LWC*: Liao and Sassen, *AR* (1994), scaled by MWR \blacktriangleright Liquid R_e : Lognormal distribution

- rain rate
- Radar/lidar-only: fitting approach for ice clouds following Hogan et al., JAM (2006)

- \blacktriangleright *IWC* / Ice R_e : Wang and Sassen, *JAM* (2001)
- ► RWC: Marshall-Palmer distribution with Wood, JAS (2005)
- **Nomenclature:** IWC/LWC = Liquid/ice water content, $\beta = visible$ extinction, $R_e = effective radius$

Dav

- Nigh

Why is daytime CCCM CF so much larger?

Relationship between extinction,

IWC and effective diameter (Fu,

JCLIM, 1996):

 $\beta = \frac{4(3)^{1/2}}{3\rho_i} \frac{IWC}{D_{ge}}$

▶ Protal et al. (*JTECH*, 2010)

showed that CloudSat

CWC-RO product tends to underestimate β above 11 km. In the CCCM dataset, when both CALIPSO and CloudSat detect a cloud: Use CALIPSO β (> CloudSat β)

- and CloudSat D_e (large positive bias) \rightarrow large *IWC* and a large *CF* ► Daytime (nighttime) CALIPSO + CloudSat IWC 69% (-2%) larger than CWC-RO.
- ► This will effect the mean profiles of *CF* more for: Optically thick clouds which have large CF already (both ARM and CCCM)
 - datasets show that clouds are optically thicker during the day) In addition, optically thick clouds attenuate CALIPSO which means these enhanced IWCs will occur near cloud top only, which is already the most radiatively active portion of the cloud.

Conclusions

- Using CALIPSO extinction with CloudSat size to infer IWC may produce inaccurate profiles of CF.
- ▶ Reprocessing of the CCCM of the dataset will definitively show if this is the case.
- ► We also performed this analysis for Nauru which shows very similar results.

We'd like to acknowledge Seiji Kato for useful discussions about the CCCM product. This research was supported by the Office of Science (BER), U.S. Department of Energy, grant DE-FG02-09ER64769

Comparison Method

- Comparison from July 2006 through June 2010. Only periods when all instruments (MMCR/ MPL/ CALIPSO/ CloudSat) are producing quality data are used.
- \blacktriangleright CCCM data taken from a 5° \times 5° domain. ► Focus our comparison on radiative cloud forcing:
- $\overline{\mathit{CF}} = \bar{\mathit{Q}}_{\mathit{R.total-skv}} \bar{\mathit{Q}}_{\mathit{R.clear-skv}}$
- ▶ In this comparison we use the full set of ARM data with the daytime solar zenith angle fixed at the mean value from the CCCM data.
- Limiting ARM data to within 2 hours of A-train overpasses produces statistically identical heating rate profiles to this fixed solar zenith angle data.

