

Introduction

- Absorbing aerosols: - Warm the atmosphere (unlike most aerosols that are cooling)
 - Most uncertain factor in GCM's?
- $(\sim 0.4 1.2 \text{ W m}^{-2})$ Absorption can lower SSA and contribute to a warmer and drier atmosphere

 How do aerosol optical properties differ at different locations and at different times of the year at a fixed site?

PASS-3

Mobile AOS (MAOS)

Winter Pine and Juniper Forest • Average B_{sca}, B_{abs}, SSA: • 11.5 ± 7.6 , 1.3 ± 0.7 , 0.87 ± 0.07 • 8.1 \pm 5.4, 0.6 \pm 0.4, 0.91 \pm 0.07 • $5.0 \pm 4.0, 0.3 \pm 0.2, 0.90 \pm 0.09$ • $AAE_{(405 \text{nm}/781 \text{nm})} = 2.1 \pm 0.6$ • $SAE_{(405nm/781nm)} = 1.4 \pm 0.6$ • $EAE_{(405nm/781nm)} = 1.4 \pm 0.5$ 1/28/2013 PACE: http://www.arm.gov/campaigns/osc2011pace

LIMATE RESEARCH FACILIT

Conclusions

Jan. '13 Instrument Upgrade to SGP PASS-3 resulted in an improvement to the Absn.

uncertainty by factors of 5.8, 3.8, 1.3. **SGP PASS-3 compares well with Nephelometer** Scattering and trends with PSAP Absorption x0.4. MAOS measurements from PACE and TCAP I/II indicate low pollution locations.

• AAE of 1.0 at SGP* indicates BC as the dominant absorber, in contrast to PACE (AAE=2.1), which implicates the presence of other absorbing species, e.g. brown carbon.

Future Work

• Further and improved comparisons with colocated instrumentation at all AOS sites Next MAOS deployment: Brazil (GoAMAZON 2014)

 Continued mentor monitoring of instruments and measurements to ensure long term stability and data quality.

References

• Cappa, CD, et al. Science, 337, 1078-81, 2012. • Cross, E.S. et al., AS&T, 44, 592-611, 2010. • Flowers, B.F. et al., ACP, 10,10387-98, 2010. Lack, D.A., et al. AS&T, 40, 697-708, 2006. • Lack, D.A. et al. PNAS, 109, 14802-14807, 2012. Data were obtained from the Atmospheric Radiation Measurement (ARM) Program sponsored by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Climate and **Environmental Sciences Division.**

