Ice Concentration Retrieval in Mixed-phase Stratiform Clouds (MSCs) Using Radar Reflectivity (Z_e) and 1-D Ice Growth Model ASR Damao Zhang¹ (<u>dzhang4@uwyo.edu</u>), Zhien Wang¹, Andrew Heymsfield², Jiwen Fan³ nospheric vstem Research ¹University of Wyoming, Laramie, WY; ² NCAR, Boulder, CO; ³PNNL, Richland, WA

Abstract: We develop an approach to retrieve the ice number concentration (N_{ice}) in MSCs by using Z_e measurements. A 1-D ice growth model is developed to calculate the ice diffusional growth and corresponding Z_{e} profile in MSCs. Combining modeled and observed Z_{ρ} provides N_{ice} estimations in MSCs with an uncertainty of a factor of 2, statistically.

1-D Ice Growth Model and Validations

Ice particles are initiated at the top of supercooled liquiddominated layer, grow

- large and fall out of the layer.
- Strong temperature dependence of ice growth habits.
- > Only ice diffusional growth is considered.
- \succ Terminal velocity (V_t) from Heymsfield and Westbrook (2010).
- Adaptive habit evolution method (Harrington et al.,

Fig 2. Ice Mass growth with time from 1-D ice growth model and model and 4 years of MMCR chamber cloud measurements (Takahashi and Fukuta 1991, with different signs). and 75% of data.

Fig 3. Z_{e_n} from 1-D ice growth measurements of MSCs at NSA Barrow. Red boxes: 25%, 50%,

Fig 4. Same as Fig 3, except for Doppler velocity comparisons.

N ice from retrieval (/L)

 $Z_{e_{layer}}$ (dBZ)

N_ice estimation and Validations

➢ In similar MSCs in terms of same CTT and LWP: $Z_e(dBZ) = 10\log 10(N_ice^*Z_{nor})$ Z_{nor} is the radar reflectivity (mm^{6}/m^{3}) for normalized ice crystal size distribution.

- $\succ N_{ice}$ is the main cause for Z_{ρ} difference among similar MSCs (Zhang et al., 2012).

The retrieved *N_ice* are within an uncertainty of a factor of 2 compared with *in situ* measurements, statistically.

 $\succ Z_{e \ laver}$: mean Z_{e} between cloud top and 500 m below.

Fig 7. Same as for Fig 6, **Fig 6**. Dec 10th, 2007 during ICEexcept for the case on Apr 8th, L. a) lidar backscattering; b) radar 2008 during ISDAC. Z_o profiles; c) in situ 2D-C N_ice Vs. $Z_{e \ laver}$, ; **d**) N_{ice} from in situ 2D-C and retrieval.

References

-18 -16 -14 -12 -10 -8

WCR Z_{e laver} (dBZ)

Zhang, D., et al., (2012), Quantifying the impact of dust on heterogeneous ice generation in midlevel supercooled stratiform clouds, Geophys. Res. Lett., 39(18).

Harrington, J. Y., et al., (2013), A Method for Adaptive Habit Prediction in Bulk Microphysical Models. Part II: Parcel Model Corroboration, J. Atmos. Sci., 70(2).